Skip to main content

Advertisement

Log in

Current genetic admixture between relictual populations might enhance the recovery of an elusive carnivore

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The present study investigated the natural recovery of the Eurasian otter (Lutra lutra) in France. The otter was widely distributed in France at the dawn of the 20th century, but then its range considerably shrank and became highly fragmented until the early 1970s, just before it was legally protected. However, for more than 25 years, the otter has been reconquering several parts of its original range and is now considered to be in expansion in France. We investigated the genetic differentiation and diversity of several populations from western and central France and northern Spain to gain insight into the recolonisation dynamics of this elusive species. The present study, based on the use of 14 microsatellite markers, revealed that otter populations seem to be split into five distinct groups. The distribution of samples in those five clusters was closely correlated with suspected refugia where the otter probably survived during the 20th century. Admixture was observed between genetic lineages, possibly enhancing their genetic diversity and thus increasing the recolonisation dynamics of these populations. This phenomenon resembles the genetic pattern noted in many invasive exotic species derived from multiple sources and introduction events. Finally, a demographic approach revealed the probable link between historical human pressure and otter population fragmentation patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Ali S, Gladieux P, Leconte M, Gautier A, Justesen AF, Hovmøller MS, Enjalbert J, de Vallavieille-Pope C (2014) Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici. PLoS One 10:e1003903

    Google Scholar 

  • Arbos P, Meynier A (1936) Géographie du Massif Central. Revue de Géogr Alp 24(2):435–442

    Google Scholar 

  • Awiti AO (2011) Biological diversity and resilience: lessons from the recovery of cichlid species in Lake Victoria. Ecol Soc 16(1):9

    Article  Google Scholar 

  • Bifolchi A, Picard D, Lemaire C, Cormier JP, Pagano A (2010) Evidence of admixture between differentiated genetic pools at a regional scale in an invasive carnivore. Conserv Genet 11:1–9

    Article  Google Scholar 

  • Bonesi L, Hale M, Macdonald DW (2013) Lessons from the use of non-invasive genetic sampling as a way to estimate Eurasian otter population size and sex ratio. Acta Theriol 58(2):157–168

    Article  Google Scholar 

  • Bouchardy C (1986) La loutre. Eds Le sang de la terre, Paris, p 174

  • Bouchardy C, Lemarchand C, Boulade Y, Gouilloux N, Rosoux R, Berny P (2011) Natural recolonisation of the Eurasian Otter (Lutra lutra) in Massif Central (France). Proc XIth Int Otter Colloquium 28B:26–29

    Google Scholar 

  • Bryja J, Smith C, Konečný A, Reichard M (2010) Range-wide population genetic structure of the European bitterling (Rhodeus amarus) based on microsatellite and mitochondrial DNA analysis. Mol Ecol 19:4708–4722

    Article  CAS  PubMed  Google Scholar 

  • Cabria MT, González EG, Gómez-Moliner BJ, Michaux JR, Skumatov D, Kranz A, Fournier P, Palazón S, Zardoya R (2015) Patterns of genetic variation in the endangered European mink (Mustela lutreola, 1761). BMC Evol Biol 15:141. https://doi.org/10.1186/s12862-015-0427-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casas-Marce M, Soriano L, López-Bao JV, Godoy JA (2013) Genetics at the verge of extinction: insights from the Iberian lynx. Mol Ecol 22:5503–5515

    Article  CAS  PubMed  Google Scholar 

  • Chapron G, Kaczensky P, Linnell JD, Von Arx M, Huber D, Andrén H et al (2014) Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346(6216):1517–1519

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268

    Article  Google Scholar 

  • Cornuet JM, Ravigné V, Estoup A (2010) Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v10). BMC Bioinf 11:401

    Article  CAS  Google Scholar 

  • Cornuet J-M, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, Marin JM, Estoup A (2014) DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30(8):1187–1189

    Article  CAS  PubMed  Google Scholar 

  • Dallas JF (1992) Estimation of microsatellite mutation rates in recombinant inbred strains of mouse. Mamm Genome 3:452–456

    Article  CAS  PubMed  Google Scholar 

  • Dallas JF, Piertney SB (1998) Microsatellite primers for the Eurasian otter. Mol Ecol 9:1248–1251

    Google Scholar 

  • Dallas JF, Bacon PJ, Carss DN, Conroy JWH, Green R, Jefferies DJ, Kruuk H, Marshall F, Piertney SB, Racey PA (1999) Genetic diversity in the Eurasian otter, Lutra lutra, in Scotland. Evidence from microsatellite polymorphism. Biol J Linn Soc Lond 68:73–86

    Article  Google Scholar 

  • Dallas JF, Marshall F, Piertney SB, Bacon PJ, Racey PA (2002) Spatially restricted gene flow and reduced microsatellite polymorphism in the Eurasian otter Lutra lutra in Britain. Genetics 3(1):15–28

    CAS  Google Scholar 

  • Demenou BB, Pineiro RP, Hardy OJ (2016) Origin and history of the Dahomey Gap separating West and Central African rain forests: insights from the phylogeography of the legume tree Distemonanthus benthamianus. J Biogeogr 43(5):1020–1031

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genetics Resour 4(2):359–361

    Article  Google Scholar 

  • Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 16(3):463–475

    Article  PubMed  Google Scholar 

  • Ellegren H (1995) Mutation rates at porcine microsatellite loci. Mamm Genome 6:376–377

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Ferrando A, Ponsà M, Marmi J, Domingo-Roura X (2004) Eurasian Otters, Lutra lutra, have a dominant mtDNA haplotype from the Iberian Peninsula to Scandinavia. J Hered 95(5):430–435

    Article  CAS  PubMed  Google Scholar 

  • Frankham R (2005) Resolving the genetic paradox in invasive species. Heredity 94(4):385

    Article  CAS  PubMed  Google Scholar 

  • Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24(11):2610–2618. https://doi.org/10.1111/mec.13139

    Article  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Eldridge MD, Lacy RC, Ralls K, Dudash MR, Fenster CB (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475

    Article  PubMed  Google Scholar 

  • Green J, Green R (1981) The Otter (Lutra lutra L.) in western France. Mamm Rev 11:181–187

    Article  Google Scholar 

  • Griffiths HI, Thomas DH (1997) The conservation and management of the European badger (Meles meles). Counc Eur Nat Environ 90:86

    Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Janssens X, Michaux JR, Fontaine MC, Libois R, de Kermabon J, Defourny P, Baret PV (2008) Non-invasive genetics at basin scale reveals barriers to the present otter recovery in Southern France. Ecography 31:176–186

    Article  Google Scholar 

  • Jefferies DJ (1989) The changing otter population in Britain 1700–1989. Biol J Linn Soc Lond 38:61–69

    Article  Google Scholar 

  • Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27(21):3070–3071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Keenan K, McGinnity P, Cross TF, Crozier WW, Prodöhl PA (2013) diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788

    Article  Google Scholar 

  • Koelewijn HP, Pérez-Haro M, Jansman HAH, Boerwinkel MC, Bovenschen J, Lammertsma DR, Niewold FJJ, Kuiters AT (2010) The reintroduction of the Eurasian otter (Lutra lutra) into the Netherlands: hidden life revealed by noninvasive genetic monitoring. Conserv Genet 11:601–614

    Article  Google Scholar 

  • Kolbe JJ, Glor RE, Rodríguez Schettino L, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181

    Article  CAS  PubMed  Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15(5):1179–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruuk H (2006) Otters: ecology, behaviour and conservation. Oxford Universtiy Press, Oxford. https://doi.org/10.1093/acprof:oso/9780198565871.001.0001

    Book  Google Scholar 

  • Kuhn R (2011) La Loutre d’Europe. In: Artois M, Haffner P, Jacques H, Moutou F, Maurin H (eds) Encyclopédie des carnivores de France. SFEPM, Bourges

    Google Scholar 

  • Langella O (2007) Populations 1.2.30: Population genetic software (individuals or populations distances, phylogenetic trees). http://bioinformatics.org/~tryphon/populations/. Accessed 12 May 2015

  • Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104:3883–3888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leblanc F, Dohogne R, Guischer V, Thuaire N, Bellanger C, Constant J (2005) Actualisation de la répartition de la Loutre d’Europe en Limousin (2003/2004). La Conservation de la Loutre, actes du XXVIIème Colloque Francophone de Mammalogie de la SFEPM, pp 9-28.

  • Legendre P, Legendre LFJ (1998) Numerical ecology. Elsevier Science, 852 pp

  • Léger F, Steinmetz J, Laoué E, Maillard J-F, Ruette S (2018) L’expansion du vison d’Amérique en France. Période 2000–2015. Faune Sauvage 138:23–31

    Google Scholar 

  • Li YL, Liu JX (2018) StructureSelector: a web based software to select and visualize the optimal number of clusters using multiple methods. Mol Ecol Resour 18:176–177

    Article  PubMed  Google Scholar 

  • Maran T, Skumatov D, Gomez A, Põdra M, Abramov AV, Dinets V (2016) Mustela lutreola. The IUCN Red List of Threatened Species 2016: e.T14018A45199861

  • Marcelli M, Polednik L, Polednikova K, Fusillo R (2012) Land use drivers of species re-expansion: inferring colonization dynamics in Eurasian otters. Divers Distrib 10:1001–1012

    Article  Google Scholar 

  • Mathias P (1933) Sur la répartition de la Loutre en France. Bull de la Soc centrale d’Aquicult et de pêche 40:73–78

    Google Scholar 

  • Matocq M, Villablanca F (2001) Low genetic diversity in an endangered species: recent or historical pattern? Biol Cons 98(1):61–68

    Article  Google Scholar 

  • Michalska-Parda A, Brzezinski M, Zalewski A, Kozakiewicz M (2009) Genetic variability of feral and ranch American mink Neovison vison in Poland. Acta Theriol 54:1–10

    Article  Google Scholar 

  • Mercier L (2004) Bilan de la réintroduction de la Loutre Lutra lutra (Linné, 1758) en Alsace, France. Bull de la Soc d’histoire naturelle de Colmar 65:117–134

    Google Scholar 

  • Michaux JR, Hardy OJ, Justy F, Fournier P, Kranz A, Cabria M, Davison A, Rosoux R, Libois R (2005) Conservation genetics and population history of the threatened European mink Mustela lutreola, with an emphasis on the west European population. Mol Ecol 14:2373–2388

    Article  CAS  PubMed  Google Scholar 

  • Mondol S, Bruford MW, Ramakrishnan U (2013) Demographic loss, genetic structure and the conservation implications for Indian tigers. Proc Royal Soc B 280:20130496

    Article  Google Scholar 

  • Mucci N, Arrendal J, Ansorge H, Bailey M, Bodner M, Delibes M, Ferrando A, Fournier P, Fournier C, Godoy JA, Hajkova P, Hauer S, Heggberget TM, Heidecke D, Kirjavainen H, Krueger H-H, Kvaloy K, Lafontaine L, Lanszki J, Lemarchand C, Liukko U-M, Loeschcke V, Ludwig G, Madsen AB, Mercier L, Ozolins J, Paunovic M, Pertoldi C, Piriz A, Prigioni C, Santos-Reis M, Luis TS, Stjernberg T, Schmid H, Suchentrunk F, Teubner J, Tornberg R, Zinke O, Randi E (2010) Genetic diversity and landscape genetic structure of otter (Lutra lutra) populations in Europe. Conserv Genet 11:583–599

    Article  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170

    Article  CAS  PubMed  Google Scholar 

  • Ogutu-Ohwayo R (1990) The decline in the native fishes of lakes Victoria and Kyoga (East Africa) and the impact of introduced fishes, especially Nile perch, Lates niloticus and Nile tilapia Oreochromis niloticus. Environ Biol Fishes 27:81–96

    Article  Google Scholar 

  • Olafsson K, Pampoulie C, Hjorleifsdottir S, Gudjonsson S, Hreggvidsson GO (2014) Present-day genetic structure of Atlantic salmon (Salmo salar) in Icelandic rivers and ice-cap retreat models. PLoS ONE 9:e86809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol ecol 4(3):347–354

    Article  CAS  PubMed  Google Scholar 

  • Palstra FP, Fraser DJ (2012) Effective/census population size ratio estimation: a compendium and appraisal. Ecol Evol 2:2357–2365

    Article  PubMed  PubMed Central  Google Scholar 

  • Pannell JR, Charlesworth B (1999) Neutral genetic diversity in a metapopulation with recurrent local extinction and recolonisation. Evolution 53:664–676

    Article  PubMed  Google Scholar 

  • Penez J (2004) Les réseaux d’investissement dans le thermalisme au XIXe siècle en France. In Situ [En ligne], 4, online on 1st March 2004, consulted on 20th April 2019

  • Pérez-Haro M, Vinas J, Manas F, Batet A, Ruiz-Olmo J, Pla C (2005) Genetic variability in the complete mitochondrial control region of the Eurasian Otter (Lutra lutra) in the Iberian Peninsula. Biol J Linn Soc 86(4):397–403

    Article  Google Scholar 

  • Pigneur L-M, Etoundi E, Aldridge DC, Marescaux J, Yasuda N, Van Doninck K (2014) Genetic uniformity and long-distance clonal dispersal in the invasive androgenetic Corbicula clams. Mol Ecol 23(20):5102–5116

    Article  PubMed  Google Scholar 

  • Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Heredity 95(6):536–539

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puechmaille SJ (2016) The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Mol Ecol Resour 16(3):608–627

    Article  PubMed  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. Accessed 20 July 2015

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Randi E, Davoli F, Pierpaoli M, Pertoldi C, Madsen AB, Loeschcke V (2003) Genetic structure in otter (Lutra lutra) populations in Europe: implications for conservation. Anim Conserv 6:1–10

    Article  Google Scholar 

  • Reuther C, Krekemeyer A (2004) On the way towards an Otter Habitat Network Europe (OHNE). Method and results of an assessment on the European and the German level. Habitat 15:308

    Google Scholar 

  • Rice WR (1989) Analyzing tales of statistical tests. Evolution 43:223–225

    Article  PubMed  Google Scholar 

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464

    Article  PubMed  Google Scholar 

  • Saavedra D, Sargatal J (1997) Reintroduction of the otter (Lutra lutra) in northeast Spain (Girona province). Galemys 10:191–199

    Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Slatkin M (1977) Gene flow and genetic drift in a species subject to frequent local extinctions. Theor Popul Biol 12:253–262

    Article  CAS  PubMed  Google Scholar 

  • Spielman D, Brook BW, Briscoe DA, Frankham R (2004) Does inbreeding and loss of genetic diversity decrease disease resistance? Conserv Genet 5(4):439–448

    Article  Google Scholar 

  • Stanton DWG, Hobbs GI, McCafferty DJ, Chadwick EA, Philbey AW, Saccheri IJ, Slater FM, Bruford MW (2014) Contrasting genetic structure of the Eurasian otter (Lutra lutra) across a latitudinal divide. J Mamm 95(4):814–823

    Article  Google Scholar 

  • Steinmetz J, Marc D, Néri F, Trichet E, Besnard A, Defos du Rau P, Bodin J (2014) Dynamique régionale de la loutre en Midi-Pyrénées. Faune Sauv 305:31–37

    Google Scholar 

  • Sunnaker M, Busetto AG, Numminen E, Corander J, Foll M, Dessimoz C (2013) Approximate bayesian computation. PLoS Comput Biol 9:e1002803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144:389–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsui ND, Suarez AV, Holway DA, Case TJ (2000) Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci USA 97:5948–5953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 10:1471–1478

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Weber JL, Wong C (1993) Mutation of human short tandem repeats. Hum Mol Genet 2:1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends Ecol Evol 30(1):42–49

    Article  PubMed  Google Scholar 

  • Witte F, Msuku BS, Wanink JH, Seehausen O, Katunzi EFB, Goudswaard PC, Goldschmidt T (2000) Recovery of cichlid species in Lake Victoria: an examination of factors leading to differential extinction. Rev Fish Biol Fish 10:233–241

    Article  Google Scholar 

  • Zalewski A, Michalska-Parda A, Bartoszewicz M, Kozakiewicz M, Brzeziński M (2010) Multiple introductions determine the genetic structure of an invasive species population: American mink Neovison vison in Poland. Biol Conserv 143(6):1355–1363

    Article  Google Scholar 

  • Zalewski A, Michalska-Parda A, Ratkiewicz M, Kozakiewicz M, Bartoszewicz M, Brzeziński M (2011) High mitochondrial DNA diversity of an introduced alien carnivore: comparison of feral and ranch American mink Neovison vison in Poland. Divers Distrib 17:757–768

    Article  Google Scholar 

  • Zhang Y-Y, Zhang D-Y, Barrett SCH (2010) Genetic uniformity characterizes the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant. Mol Ecol 19:1774–1786

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all sample contributors from the different regions, and especially Sébastien Gautier (ONCFS), Ludovic Fleury and the following partners: Cistude-Nature, Charente-Nature, CEN Midi-Pyrénées, GREGE, ONCFS (a.o. Délégation Interrégionale Nord Ouest and Cellule Technique Sud Ouest), GMB, GMN, GMHL, LPO, Museum of Toulouse (MHNT), Fédération Aude Claire, Government of Navarra via the GANASA (Gestión Ambiental de Navarra), French ministry MTES and the DREAL’s, SFEPM and PNA Loutre. The authors thank the editor and three anonymous reviewers for their fruitful comments on the manuscript. We are also grateful to Prof. K. Van Doninck (University of Namur) for help in fundraising and logistic support.

Funding

LMP and JRM benefited from FRS-FNRS grants (“chargée de recherches” and “directeur de recherches”, respectively).

Author information

Authors and Affiliations

Authors

Contributions

CFC, DM, PF, NS, JRM and LMP designed research, performed analyses and wrote the paper. CFC, PF, DM, GC, XG, BL, FS, ES, JS and FUM contributed samples and helped for interpreting data and improving the manuscript.

Corresponding author

Correspondence to Lise-Marie Pigneur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10592_2019_1199_MOESM1_ESM.png

Supplementary material 1 Principal component analysis performed on the first 10,000 simulated datasets using DIY ABC. The large yellow dot represents the observed dataset. (PNG 159 kb)

10592_2019_1199_MOESM2_ESM.pdf

Supplementary material 2 Results of the Bayesian clustering analysis with STRUCTURE software. Left: mean lnP(D) for each tested K value, right: ΔK values for each K (PDF 28 kb)

Supplementary material 3 Bayesian information criterion distribution of k-means algorithm results (JPG 61 kb)

10592_2019_1199_MOESM4_ESM.xlsx

Supplementary material 4 Model specifications and prior distributions for demographic parameters (here for Scenario 5) (XLSX 30 kb)

10592_2019_1199_MOESM5_ESM.xlsx

Supplementary material 5 Performance analysis of the model choice procedure. D = proportion of cases in which the simulation-based model choice procedure selected a scenario as the most probable with non-overlapping confidence intervals of the posterior probabilities of each scenario. * Type-I or α-error rate. ° Type-II or β-error rate (1- Σ βi is used to determine the power of the model choice procedure) (XLSX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pigneur, LM., Caublot, G., Fournier-Chambrillon, C. et al. Current genetic admixture between relictual populations might enhance the recovery of an elusive carnivore. Conserv Genet 20, 1133–1148 (2019). https://doi.org/10.1007/s10592-019-01199-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-019-01199-9

Keywords

Navigation