Skip to main content

Advertisement

Log in

Genetic diversity and population structure of the range restricted rock firefinch Lagonosticta sanguinodorsalis

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Understanding the degree of genetic population differentiation is important in conservation genetics for inferring gene flow between populations and for identifying small and isolated threatened populations. We evaluated the genetic variation within and between three populations of the rock firefinch (Lagonosticta sanguinodorsalis), a range restricted firefinch endemic to Nigeria and Cameroon. The populations were closely located (c. 100 km apart) within the species’ core distribution in Central Nigeria. We found that the populations had similar levels of gene diversities (H E ) and low but significant inbreeding coefficients (F IS ). Despite the short distance between populations there was a weak but significant population structure, which indicates that the populations are somewhat isolated and affected by drift within the species’ core distribution in Nigeria. The knowledge of the genetic status of the rock firefinch will serve as a foundation to future studies to help understand population demography and for managing and maintaining viable populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abakala J, Hansson B (2014) Microsatellite markers for population genetic study of the rock firefinch, Lagonosticta sanguinodorsalis. Afr Zool 49

  • Abalaka JI, Jones PJ (2011) Population densities of the Rock Firefinch Lagonosticta sanguinodorsalis and some other estrildine and viduine finches on the Jos Plateau, Nigeria. In: Harebottle DM, Craig AJFK, Anderson MD, Rakotomanana H, Muchai M (eds) Proceedings of the 12th Pan-African Ornithological Congress, 2008. Cape Town, Animal Demography Unit, pp 131–134

    Google Scholar 

  • Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol 5:18–190

    Article  Google Scholar 

  • Bensch S, Hasselquist D, von Schantz T (1994) Genetic similarity between parents predicts hatching failure: nonincestuous inbreeding in the great reed warbler. Evolution 48:317–326

    Article  Google Scholar 

  • Brandt M, Cresswell W (2008) Breeding behaviour, home range and habitat selection in rock firefinches Lagonosticta sanguinodorsalis in the wet and dry season in Central Nigeria. Ibis 150:495–507

    Article  Google Scholar 

  • Dawson DA, Horsburgh GJ, Kupper C, Stewart IRK, Ball AD, Durrant KL, Hansson B, Bacon I, Bird S, Klein A, Krupa AP, Lee JW, Martin-Galvez D, Simeoni M, Smith G, Spurgin LG, Burke T (2010) New methods to identify conserved microsatellite loci and develop primer sets of high cross-species utility: as demonstrated for birds. Mol Ecol Resour 10:475–494

    Article  CAS  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fagan FW, Holmes EE (2006) Quantifying the extinction vortex. Ecol Lett 9:51–60

    PubMed  Google Scholar 

  • Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. University of Cambridge Press, Cambridge

    Book  Google Scholar 

  • Fry CH, Keith S (2004) Birds of Africa, Vol. VII: sparrows to buntings, Christopher Helm, London

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9.3. http://www2.unil.ch/popgen/softwares/fstat.htm

  • Hansson B, Bensch S, Hasselquist D, Lillandt B-G, Wennerberg L, von Schantz T (2000) Increase of genetic variation over time in a recently founded population of great reed warblers (Acrocephalus arundinaceus) revealed by microsatellites and DNA fingerprinting. Mol Ecol 9:1529–1538

    Article  CAS  PubMed  Google Scholar 

  • Hansson B, Bensch S, Hasselquist D, Nielsen B (2002) Restricted dispersal in a long-distance migrant bird with patchy distribution, the great reed warbler. Oecologia 130:536–542

    Article  Google Scholar 

  • Hansson B, Hasselquist D, Tarka M, Zehtindjiev P, Bensch S (2008) Postglacial colonisation patterns and the role of isolation and expansion in driving diversification in a passerine bird. PLoS ONE 3:e2794

    Article  PubMed Central  PubMed  Google Scholar 

  • Jackson JA (1978) Analysis of the distribution and population status of the red-cockaded wood pecker. In: Odum RR, Landers L (eds) Proceedings of the rear and endangered wildlife symposium Technical Bulletin WL4, Georgia Department of Natural Resources, Game and Fish Division, Athens, Georgia, pp 101–110

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Keller LF, Arcese P, Smith JNM, Hochachka WM, Stearns SC (1994) Selection against inbred song sparrows during a natural population bottleneck. Nature 372:356–357

    Article  CAS  PubMed  Google Scholar 

  • Madsen T, Shrine R, Olsson M, Wittzell H (1999) Restoration of an inbred adder population. Nature 402:34–35

    Article  CAS  Google Scholar 

  • Mayer C, Schiegg K, Pasinelli G (2009) Patchy population structure in a short distance migrant: evidence from genetic and demographic data. Mol Ecol 18:2353–2364

    Article  CAS  PubMed  Google Scholar 

  • McRae SB, Amos W (1999) Characterization of hypervariable microsatellites in the cooperatively breeding white-browed sparrow weaver Plocepasser mahali. Mol Ecol 8:903–904

    CAS  PubMed  Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18

    Article  PubMed  Google Scholar 

  • Oosterhout CV, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Page RDM, Holmes EC (1998) Molecular Evolution: a phylogenetic approach. Blackwell, Oxford

    Google Scholar 

  • Payne RB (1998) A new species of firefinch Lagonosticta from northern Nigeria and its association with the Jos Plateau Indigobird Vidua maryae. Ibis 140:368–381

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peel D, Ovenden JR, Peel SL (2004) NEESTIMATOR: software for estimating effective population size, Version 1.3. Queensland Government, Department of Primary Industries and Fisheries, St Lucia, Queensland. http://www.dpi.qld.gov.au/28_6908.htm.

  • Pollak E (1983) A new method for estimating the effective population size from allele frequency changes. Genetics 104:531–548

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Slate J, Hale MC, Birkhead TR (2007) Simple sequence repeats in zebra finch (Taeniopygia guttata) expressed sequence tags: a new resource for evolutionary genetic studies of passerines. BMC Genome 8:52

    Article  Google Scholar 

  • Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA 101:15261–15264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stangel PW, Lennartz RM, Smith MH (1992) Genetic variation and population structure of red-cockaded Woodpeckers. Conserv Biol 6:283–292

    Article  Google Scholar 

  • Vilà C, Sundqvist A, Flagstad Ø, Seddon J, Björnerfeldt S, Kojola I, Casulli A, Sand H, Wabakken P, Ellegren H (2003) Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proc R Soc Lond B 270:91–97

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Westemeier RL, Brawn JD, Simpson SA, Esker TL, Jansen RW, Walk JW, Kershner EL, Bouzat JL, Paige KN (1998) Tracking the long-term decline and recovery of an isolated population. Science 282:1695–1698

    Article  CAS  PubMed  Google Scholar 

  • Wingfield JC, Farner DS (1976) Avian endocrinology: field investigations and methods. Condor 78:570–573

    Article  Google Scholar 

  • Winker K, Glenn TC, Graves GR (1999) Dinucleotide microsatellite loci in a migratory wood warbler (Parulidae: Limnothlypis swainsonii) and amplification among other songbirds. Mol Ecol 8:1553–1556

    Article  CAS  Google Scholar 

  • Woltmann S, Kreiser BR, Sherry TW (2012) Fine-scale genetic population structure of an understory rainforest bird in Costa Rica. Conserv Genet 13:925–935

    Article  Google Scholar 

  • Wright D, Jones P (2005) Population densities and habitat associations of the range-restricted Rock Firefinch Lagonosticta sanguinodorsalis on the Jos Plateau, Nigeria. Bird Conserv Int 15:287–295

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from the British Ecological Society (to JA), the A. P. Leventis foundation (to JA), Swedish Ornithological Society (to JA), Swedish Research Council (to BH) and EU FP7 (Marie Curie IRSES, project Avian Genomics 295276) (to BH). We also thank the A. P. Leventis Ornithological Research Institute (APLORI) for logistical support. Arin Izang was a great assistant during the fieldwork. This is APLORI publication no. 80.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacinta Abalaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abalaka, J., Hudin, N.S., Ottosson, U. et al. Genetic diversity and population structure of the range restricted rock firefinch Lagonosticta sanguinodorsalis . Conserv Genet 16, 411–418 (2015). https://doi.org/10.1007/s10592-014-0667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0667-z

Keywords

Navigation