Skip to main content

Advertisement

Log in

Spatial aspects of movements, mating patterns, and nest distributions influence gene flow among population subunits of Blanding’s turtles (Emydoidea blandingii)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The core habitats of semi-aquatic organisms are centered on wetlands, but also include terrestrial habitats. Patterns of movements among core area components can influence rates of genetic and demographic exchange among populations. A combination of 33 years of data on the life history and spatial biology of Blanding’s turtles (Emydoidea blandingii) on the E. S. George Reserve (ESGR) and 8 years of genetic data (N = 244 adults and 611 offspring) were used to document resident wetlands, identify mating pairs, and estimate cohort levels of coancestry and degree of spatial genetic structuring. For ESGR resident females, 34 % of clutches were sired by non-resident males, whereas 56 % of clutches of non-resident females that nested on the ESGR were sired by ESGR resident males. The mean number of mates for males and females was 1.6 (SD = 0.67) and 2.02 (SD = 1.05), respectively, and the annual occurrence of multiple paternity averaged 47.6 % (min–max = 15.4–55.6 %, N = 8). Repeat paternity was common (69.6 %), regardless of residence of parents. The probability of adults mating with individuals from different residence wetlands and tendencies for hatchlings to disperse to wetlands other than their mother’s residence contributed to demographic and genetic connectivity among residence wetlands. Similar allele frequencies among individuals from different residence wetlands (Fst = 0.002, P > 0.05) were consistent with the frequency and geographic extent of adult and juvenile movements. Data on mating patterns, individual movements, and core-habitat use helped identify mechanisms that influence genetic structuring within a population comprised of multiple sub-units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akçakaya HR, Mills G, Doncaster CP (2007) The role of metapopulations in conservation. In: Macdonald DW, Service K (eds) Key topics in conservation biology. Blackwell, Oxford, pp 64–84

    Google Scholar 

  • Anderson CD, Epperson BK, Fortin MJ, Holderegger R, James P, Rosenberg M, Scribner KT, Spear S (2010) Considering spatial and temporal scale in landscape-genetic studies of gene flow. Mol Ecol 19(17):3565–3575. doi:10.1111/j.1365-294X.2010.04757.x

    Article  PubMed  Google Scholar 

  • Aresco MJ (2005) The effect of sex-specific terrestrial movements and roads on the sex ratio of freshwater turtles. Biol Conserv 123(1):37–44. doi:10.1016/j.biocon.2004.10.006

    Article  Google Scholar 

  • Avise JC (2001) Introduction. J Hered 92(2):99. doi:10.1093/jhered/92.2.99

    Article  PubMed  Google Scholar 

  • Bauer DM, Paton PWC, Swallow SK (2010) Are wetland regulations cost effective for species protection? a case study of amphibian metapopulations. Ecol Appl 20(3):798–815. doi:10.1890/08-2209.1

    Article  PubMed  Google Scholar 

  • Bodie JR, Semlitsch RD (2000) Spatial and temporal use of floodplain habitats by lentic and lotic species of aquatic turtles. Oecologia 122(1):138–146. doi:10.1007/pl00008830

    Article  Google Scholar 

  • Brecke BJ, Moriarty JJ (1989) Emydoidea blandingii (Blanding’s turtle) longevity. Herpetol Rev 20:53

    Google Scholar 

  • Buhlmann KA, Congdon JD, Gibbons JW, Greene JL, Mathis A (2009) Ecology of Chicken turtles (Deirochelys reticularia) in a seasonal wetland ecosystem: exploiting resource and refuge environments. Herpetologica 65(1):39–53. doi:10.1655/08-028r1.1

    Article  Google Scholar 

  • Butler BO, Graham T (1995) Early post-emergent behavior and habitat selection in hatchling Blanding’s turtles (Emydoidea blandingii), in Massachusetts. Chelonian Conserv Biol 1:187–196

    Google Scholar 

  • Cagle FR (1944) Home range, homing behavior, and migration in turtles. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Calhoun AKJ, Walls TE, Stockwell SS, McCollough M (2003) Evaluating vernal pools as a basis for conservation strategies: a Maine case study. Wetlands 23(70B):81

    Google Scholar 

  • Chesser RK (1991) Influence of gene flow and breeding tactics on gene diversity within populations. Genetics 129(2):573–583

    PubMed  CAS  Google Scholar 

  • Chesser RL, Hesser R, Smith MW, Smith MH (1984) Biochemical genetics of mosquitofish 111. Incidence and significance of multiple insemination. Genetica 64:77–81

    Article  Google Scholar 

  • Congdon JD, Keinath DA (2006) Blanding’s turtle (Emydoidea blandingii): a technical conservation assessment. USDA Forest Service, Rocky Mountain Region. Available http://www.fs.fed.us/r2/projects/scp/assessments/blandingsturtle.pdf. Accessed 13 May 2013

  • Congdon JD, van Loben Sels RC (1991) Growth and body size in Blanding’s turtles (Emydoidea blandingii): relationships to reproduction. Can J Zool 69:239–245

    Article  Google Scholar 

  • Congdon JD, van Loben Sels RC (1993) Relationships of reproductive traits and body size with attainment of sexual maturity and age in Blandings’s turtles. J Evol Biol 6:547–557

    Article  Google Scholar 

  • Congdon JD, Tinkle DW, Breitenbach GL, van Loben Sels RC (1983) Nesting ecology and hatchling success in the turtle Emydoidea blandingii. Herpetologica 39:417–429

    Google Scholar 

  • Congdon JD, Dunham AE, van Loben Sels RC (1993) Delayed sexual maturity and demographics of Blanding’s turtles (Emydoidea blandingii): implications for conservation and management of long-lived organisms. Conserv Biol 7(4):826–833

    Article  Google Scholar 

  • Congdon JD, Nagle RD, Kinney OM, Osentoski M, Avery H, van Loben Sels RC, Tinkle DW (2000) Nesting ecology, and embryo mortality: implications for the demography of Blanding’s turtles (Emydoidea blandingii). Chelonian Conserv Biol 3:569–579

    Google Scholar 

  • Congdon JD, Nagle RD, Kinney OM, van Loben Sels RC (2001) Hypotheses of aging in a long-lived vertebrate, Blanding’s turtle (Emydoidea blandingii). Exp Gerontol 36(4–6):813–827

    Article  PubMed  CAS  Google Scholar 

  • Congdon JD, Graham T, Herman T, Lang J, Pappas M, Brecke B (2008) Emydoidea blandingii (Holbrook 1838)—Blanding’s turtle. Chelonian Res Monogr. doi:10.3854/crm.5.015blandingiiv1.2008

    Google Scholar 

  • Congdon JD, Kinney OM, Nagle RD (2011) Spatial ecology and core area protection of Blanding’s turtle (Emydoidea blandingii). Can J Zool 89:1097–1105

    Article  Google Scholar 

  • Cuellar O (1966) Delayed fertilization in the lizard Uta stansburiana. Copeia 3:549–552

    Article  Google Scholar 

  • Emlen S, Oring L (1977) Ecology, sexual selection, and the evolution of mating systems. Science 197(4300):215–223. doi:10.1126/science.327542

    Article  PubMed  CAS  Google Scholar 

  • Ewing H (1943) Continued fertility in female box turtles following mating. Copeia 1943:112–114

    Article  Google Scholar 

  • Findlay CS, Bourdages J (2000) Response time of wetland biodiversity to road construction on adjacent lands. Conserv Biol 14(1):86–94. doi:10.1046/j.1523-1739.2000.99086.x

    Article  Google Scholar 

  • Fitzsimmons NN (1998) Single paternity of clutches and sperm storage in the promiscuous green turtle (Chelonia mydas). Mol Ecol 7(5):575–584

    Article  PubMed  CAS  Google Scholar 

  • Fiumera AC, Porter BA, Grossman GD, Avise JC (2002) Intensive genetic assessment of the mating system and reproductive success in a semi-closed population of the mottled sculpin, Cottus bairdi. Mol Ecol 11(11):2367–2377

    Article  PubMed  CAS  Google Scholar 

  • Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95–107

    Article  Google Scholar 

  • Gibbons JW (1976) Aging phenomena in reptiles. EAR, Inc., Bar Harbor, pp 454–475

    Google Scholar 

  • Gibbons JW, Greene JL (1979) X-ray photography: a technique to determine reproductive patterns of freshwater turtles. Herpetologica 35:86–89

    Google Scholar 

  • Gibbons JW, Greene JL, Congdon JD (1983) Drought-related responses of aquatic turtle populations. J Herpetol 17:242–246

    Article  Google Scholar 

  • Gibbons JW, Greene JL, Congdon JD (1990) Temporal and spatial movement patterns of sliders and other turtles. In: Gibbons JW (ed) Life history and ecology of the Slider turtle. Smithsonian Institute Press, Washington, DC, pp 201–215

    Google Scholar 

  • Gibbs JP, Shriver WJ (2002) Estimating the effects of road mortality on turtle populations. Conserv Biol 16(6):1647–1652

    Article  Google Scholar 

  • Gist DH, Jones J (1987) Storage of sperm in the reptilian oviduct. Scanning Microsc 1:1839–1849

    PubMed  CAS  Google Scholar 

  • Githiru M, Lens L (2004) Using scientific evidence to guide the conservation of a highly fragmented and threatened Afrotropical forest. Oryx 38(04):404–409. doi:10.1017/S0030605304000778

    Article  Google Scholar 

  • Goin CJ, Goin OB, Zug GR (1978) Introduction to herpetology. W.H. Freeman and Co., New York

    Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): A computer program to calculate F-Statistics. J Hered 86(6):485–486

    Google Scholar 

  • Grgurovic M, Sievert P (2005) Movement patterns of Blanding’s turtles (Emydoidea blandingii) in the suburban landscape of eastern Massachusetts. Urban Ecosyst 8:203–213

    Article  Google Scholar 

  • Hamernick MG (2001) Home ranges and habitat selection of Blanding’s turtle (Emydoidea blandingii) at the Weaver Dunes, Minnesota. St. Mary’s University of Minnesota, Winona

    Google Scholar 

  • Herman T, Boates S, Drysdale C, Alcorn E, Bleakney S, Eaton S, Elderkin M, Gilhen J, Jones C, Kierstead J, McNeil J, Mills J, Mockford S, Morrison I, O’Grady S, Smith D (2002) National recovery plan for the Blanding’s turtle (Emydoidea blandingii) Nova Scotia population. In Nova Scotia, Canada

    Google Scholar 

  • Hinton TG, Fledderman PD, Lovich JE, Congdon JD, Gibbons JW (1997) Radiographic determination of fecundity: is the technique safe for developing turtle embryos? Chelonian Conserv Biol 2:409–414

    Google Scholar 

  • Jones B, Grossman GD, Walsh DCI, Porter BA, Avise JC, Fiumera AC (2007) Estimating differential reproductive success from nests of related individuals, with application to a study of the mottled sculpin, Cottus bairdi. Genetics 176(4):2427–2439. doi:10.1534/genetics.106.067066

    Article  PubMed  Google Scholar 

  • Jun-Yi L (1982) Sperm retention in the lizard Chamaeleo hoehnelii. Copeia 2:488–489

    Article  Google Scholar 

  • Kalinowski S, Taper M, Marshall T (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Karl SA (2008) The effect of multiple paternity on the genetically effective size of a population. Mol Ecol 17(18):3973–3977. doi:10.1111/j.1365-294X.2008.03902.x

    Article  PubMed  Google Scholar 

  • Kennett RM, Georges A (1990) Habitat utilization and its relationship to growth and reproduction of the Eastern Long-Necked turtle, Chelodina longicollis (Testudinata: Chelidae), from Australia. Herpetologica 46(1):22–33

    Google Scholar 

  • King TL, Julian SE (2004) Conservation of microsatellite DNA flanking sequence across 13 Emydid genera assayed with novel bog turtle (Glyptemys muhlenbergii) loci. Conserv Genet 5(5):719–725. doi:10.1007/s10592-004-1854-0

    Article  Google Scholar 

  • Kinney OM (1999) Movements and habitat use of Blanding’s turtles in southeast Michigan: implications for conservation and management. University of Georgia, Athens, GA

    Google Scholar 

  • Lee PLM (2008) Molecular ecology of marine turtles: New approaches and future directions. J Exp Mar Biol Ecol 356(1–2):25–42. doi:10.1016/j.jembe.2007.12.021

    Article  CAS  Google Scholar 

  • Leslie JF, Vrijenhoek RC (1977) Genetic analysis of natural populations of Poeciliopsis monacha: Allozyme inheritance and pattern of mating. J Hered 68(5):301–306

    PubMed  CAS  Google Scholar 

  • Libants S, Kamarainen AM, Scribner KT, Congdon JD (2004) Isolation and cross-species amplification of seven microsatellite loci from Emydoidea blandingii. Mol Ecol Notes 4(2):300–302

    Article  CAS  Google Scholar 

  • Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19(15):3038–3051. doi:10.1111/j.1365-294X.2010.04688.x

    Article  PubMed  Google Scholar 

  • McGuire JM, Congdon JD, Scribner KT, Capps J (2011) Variation in female reproductive quality and reproductive success of male Midland Painted turtles (Chrysemys picta marginata). Can J Zool 89(11):1136–1145

    Article  Google Scholar 

  • Miller KA, Nelson NJ, Smith HG, Moore JA (2009) How do reproductive skew and founder group size affect genetic diversity in reintroduced populations? Mol Ecol 18(18):3792–3802. doi:10.1111/j.1365-294X.2009.04315.x

    Article  PubMed  CAS  Google Scholar 

  • Mockford SW, McEachern L, Herman TB, Snyder M, Wright JM (2005) Population genetic structure of a disjunct population of Blanding’s turtle (Emydoidea blandingii) in Nova Scotia, Canada. Biol Conserv 123(3):373–380. doi:10.1016/j.biocon.2004.11.021

    Article  Google Scholar 

  • Mockford S, Herman T, Snyder M, Wright J (2007) Conservation genetics of Blanding’s turtle and its application in the identification of evolutionarily significant units. Conserv Genet 8(1):209–219. doi:10.1007/s10592-006-9163-4

    Article  Google Scholar 

  • Morreale SJ, Gibbons JW, Congdon JD (1984) Significance of activity and movement in the yellow-bellied slider (Pseudemys scripta). Can J Zool 62:1038–1042

    Article  Google Scholar 

  • Nunney L (1993) The influence of mating system and overlapping generations on effective population size. Evolution 47(5):1329–1341. http://www.jstor.org/stable/2410151. Accessed 13 May 2013

    Google Scholar 

  • Obbard ME, Brooks R (1980) Nesting migrations of the Snapping turtle (Chelydra serpentina). Herpetologica 36(2):158–162. http://www.jstor.org/stable/3891480. Accessed 13 May 2013

    Google Scholar 

  • Osentoski MF, Mockford SM, Wright JM, Snyder M, Herman TB, Hughes CR (2002) Isolation and characterization of microsatellite loci from Blanding’s turtle, Emydoidea blandingii. Mol Ecol Notes 2(2):147–149

    Article  CAS  Google Scholar 

  • Owens IPF (2006) Where is behavioural ecology going? Trends Ecol Evol 21(7):356–361. doi:10.1016/j.tree.2006.03.014

    Article  PubMed  Google Scholar 

  • Palmer KS, Rostal DC, Grumbles JS, Mulvey M (1998) Long-term sperm storage in the Desert Tortoise (Gopherus agassizii). Copeia 1998(3):702–705

    Article  Google Scholar 

  • Pearse DE, Anderson EC (2009) Multiple paternity increases effective population size. Mol Ecol 18:3124–3127

    Article  PubMed  Google Scholar 

  • Pearse DE, Avise JC (2001) Turtle mating systems: behavior, sperm storage, and genetic paternity. J Hered 92(2):206–211. doi:10.1093/jhered/92.2.206

    Article  PubMed  CAS  Google Scholar 

  • Pearse DE, Janzen FJ, Avise JC (2001) Genetic markers substantiate long-term storage and utilization of sperm by female painted turtles. Heredity 86(3):378–384

    Article  PubMed  CAS  Google Scholar 

  • Pearse D, Janzen F, Avise J (2002) Multiple paternity, sperm storage, and reproductive success of female and male painted turtles (Chrysemys picta) in nature. Behav Ecol Sociobiol 51(2):164–171

    Article  Google Scholar 

  • Piepgras SA, Lang JW (2000) Spatial ecology of Blanding’s turtle in central Minnesota. Chelonian Conserv Biol 3(4):589–601

    Google Scholar 

  • Power TD (1989) Seasonal movements and nesting ecology of a relict population of Blanding’s turtle in Nova Scotia. M.SC. Thesis, Acadia University, Wolfville, Nova Scotia

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Pusey A, Williams J, Goodall J (1997) The influence of dominance rank on the reproductive success of female chimpanzees. Science 277(5327):828–831. doi:10.1126/science.277.5327.828

    Article  PubMed  CAS  Google Scholar 

  • R Core Development Team (2007) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org. Accessed 8 Feb 2013

  • Refsnider JM (2009) High frequency of multiple paternity in Blanding’s turtle (Emys blandingii). J Herpetol 43(1):74–81. doi:10.1670/08-102r.1

    Article  Google Scholar 

  • Robbins L, Hartman GD, Smith MH (1987) Dispersal, reproductive strategies, and the maintenance of genetic variability in mosquitofish (Gambusia affinis). Copeia 1987:156–164

    Article  Google Scholar 

  • Roe JH, Brinton AC, Georges A (2009) Temporal and spatial variation in landscape connectivity for a freshwater turtle in a temporally dynamic wetland system. Ecol Appl 19(5):1288–1299

    Article  PubMed  Google Scholar 

  • Roques S, Díaz-Paniagua C, Portheault A, Pérez-Santigosa N, Hidalgo-Vila J (2006) Sperm storage and low incidence of multiple paternity in the European pond turtle, Emys orbicularis: A secure but costly strategy? Biol Conserv 129(2):236–243

    Article  Google Scholar 

  • Rosenberg MS, Anderson CD (2011) PASSaGE: Pattern analysis, spatial statistics and geographic exegesis. Version 2 methods in ecology and evolution 2 (in press)

  • Ross DA, Anderson RK (1990) Habitat use, movements, and nesting of Emydoidea blandingii in central Wisconsin. J Herpetol 24:6–12

    Article  Google Scholar 

  • Rowe JW, Moll EO (1991) A radiotelemetric study of activity and movements of the Blanding’s turtle (Emydoidea blandingii) in northeastern Illinois. Herpetologica 25:178–185

    Article  Google Scholar 

  • Ryan TJ, Conner CC, Douthitt BA, Sterrett SC, Salsbury CM (2008) Movement and habitat use of two aquatic turtles (Graptemys geographica and Trachemys scripta) in an urban landscape. Urban Ecosyst 11(2):213–225. doi:10.1007/s11252-008-0049-8

    Article  Google Scholar 

  • Schuler M, Thiel RP (2008) Annual vs. multiple-year home range sizes of individual Blanding’s turtles, Emydoidea blandingii, in Central Wisconsin. Can Field Nat 122(1):61–64

    Google Scholar 

  • Scribner KT, Chesser RK (2001) Group-structured models in analyses of he population and behavioral ecology of poikilothermic vertebrates. J Hered 98:180–189

    Article  Google Scholar 

  • Scribner KT, Congdon JD, Chesser RK, Smith MH (1993) Annual differences in female reproductive success affect spatial and cohort-specific genotypic heterogeneity in Painted turtles. Evolution 47(5):1360–1373

    Article  Google Scholar 

  • Scribner KT, Morreale S, Smith MH, Gibbons JW (1995) Factors contributing to temporal and age-specific genetic variation in the freshwater turtle Trachemys scripta. Copeia 1995:970–977

    Article  Google Scholar 

  • Semlitsch R (1998) Biological delineation of terrestrial buffer zones for pond-breeding salamanders. Conserv Biol 12:1113–1119

    Article  Google Scholar 

  • Semlitsch R, Bodie JR (2003) Biological criteria for buffer zones around wetlands and riparian habitats for amphibians and reptiles. Conserv Biol 17(5):1219–1228

    Article  Google Scholar 

  • Shuster S, Wade M (2003) Mating systems and strategies. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Standing KL, Herman TB, Morrison IP (1999) Nesting ecology of Blanding’s turtle (Emydoidea blandingii) in Nova Scotia, the northeastern limit of the species’ range. Can J Zool 77(10):1609–1614. doi:10.1139/z99-122

    Google Scholar 

  • Steen DA, Gibbs JP (2004) Effects of roads on the structure of freshwater turtle populations. Conserv Biol 18(4):1143–1148. doi:10.1111/j.1523-1739.2004.00240.x

    Article  Google Scholar 

  • van Dijk PP, Rhodin AGJ (2011) Emydoidea blandingii. In: IUCN 2012. IUCN red list of threatened species, version 2012.2. http://www.iucnredlist.org. Downloaded on 13 May 2013

  • Vrijenhoek RC (1979) Genetics of sexually reproducing fish in a highly fluctuation environment. Am Nat 113:17–29

    Article  Google Scholar 

  • Wang J, Santure AW (2009) Parentage and sibship inference from multilocus genotype data under polygamy. Genetics 181(4):1579–1594. doi:10.1534/genetics.108.100214

    Article  PubMed  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-Statistics for the analysis of population structure. Evolution 38(6):1358–1370

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Museum of Zoology and Ecology and Evolutionary Biology Department at the University of Michigan for administering and maintaining the ESGR as a world-class research area. We thank the long-term field crew R. Nagle, O. Kinney, R. van Loben Sels, T. Quinter, and H. Avery for improvements to all aspects of the study. Special thanks to Cece Fabbro for emergency help processing hatchlings and spirited conversations. The laboratory portion of the study was assisted greatly by S. Libants, K. Bennett, and R. Komosinski. Improvements of earlier drafts of the manuscript are the results of comments from N. Dickson, K. Holekamp, R. van Loben Sels, D. Schemske, A. McAdam, and members of the Scribner lab and from reviews and comments from D. Pearse and other anonymous reviewers. Research for this paper was funded by the National Science Foundation (DEB-74-070631, DEB-79-06301, and BSR-90-19771) to JDC, the US Department of Energy Financial Assistant Award (DE-FC09-96SR18546 to the University of Georgia Research Foundation). Additional support was provided by N. Dickson, J. Congdon, the Fabbro family, and M. Tinkle. Research and manuscript preparation were aided by the University of Michigan Museum of Zoology and Ecology and Evolutionary Biology Department (J.M.), Michigan State University College of Natural Science (J.M.), Michigan State University Department of Zoology (J.M.), Michigan State University Department of Fisheries and Wildlife (K.S.), and the Michigan Agricultural Experimental Station (K.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanette M. McGuire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGuire, J.M., Scribner, K.T. & Congdon, J.D. Spatial aspects of movements, mating patterns, and nest distributions influence gene flow among population subunits of Blanding’s turtles (Emydoidea blandingii). Conserv Genet 14, 1029–1042 (2013). https://doi.org/10.1007/s10592-013-0493-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-013-0493-8

Keywords

Navigation