Skip to main content

Advertisement

Log in

Population genetic structure in a threatened tree, Pyrus calleryana var. dimorphophylla revealed by chloroplast DNA and nuclear SSR locus polymorphisms

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Pyrus calleryana var. dimorphophylla, a variety of Callery pear (Pyrus calleryana), is endemic to the Tokai district of central Japan, and is currently listed as “Endangered”. The remnant habitats and trees are of limited number, and highly fragmented. As the first step in determining appropriate conservation units, genetic diversity and differentiation in this species were investigated using chloroplast DNA (cpDNA) and nuclear simple sequence repeat (SSR) polymorphisms. All possible remnant trees were genotyped, then six populations were defined based on the results of cpDNA haplotype determination and Bayesian clustering approaches performed using the SSR locus data. Some trees appeared to originate from artificial propagation. Some individuals were difficult to differentiate genetically from the related species, Pyrus × uyematsuana, which is considered to be a hybrid between P. calleryana var. dimorphophylla and a possibly naturalized species, Pyrus pyrifolia, implying that introgression between these species may have occurred. In P. calleryana var. dimorphophylla, anthropogenic factors such as propagation and related species planting are probably major causes of complexity in the genetic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aichi Environmental Research Center (2009) Red data book of Aichi: threatened wildlife of Aichi Prefecture, plants. Department of the Environment Aichi Prefectural Government, Nagoya, p 94 (in Japanese)

  • Birky CW Jr (1995) Evolution and variation in plant chloroplast and mitochondrial genomes. In: Gottlieb LD, Jain SK (eds) Plant evolutionary biology. Chapman & Hall Ltd., London, pp 23–53

    Google Scholar 

  • Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7:747–756

    Article  Google Scholar 

  • Coulon A, Fitzpatrick JW, Bowman R, Stith BM, Makarewich CA, Stenzler LM, Lovette IJ (2008) Congruent population structure inferred from dispersal behaviour and intensive genetic surveys of the threatened Florida scrub-jay (Aphelocoma coerulescens). Mol Ecol 17:1685–1701

    Article  PubMed  CAS  Google Scholar 

  • Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131

    Article  PubMed  CAS  Google Scholar 

  • Durand E, Jay F, Gaggiotti OE, François O (2009) Spatial inference of admixture proportions and secondary contact zones. Mol Biol Evol 26:1963–1973

    Article  PubMed  CAS  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  Google Scholar 

  • Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72:250–259

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Frantz AC, Cellina S, Krier A, Schley L, Burke T (2009) Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: clusters or isolation by distance? J Appl Ecol 46:493–505

    Article  Google Scholar 

  • Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96:1069–1076

    Article  CAS  Google Scholar 

  • Goldstein DB, Schlötterer C (1999) Microsatellites. Evolution and application. Oxford University Press, New York

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www2.unil.ch/popgen/softwares/fstat.htm

  • Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with interspecific variation. Mol Ecol 8:521–523

    PubMed  CAS  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGEDI a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol Evol 18:147–155

    Article  Google Scholar 

  • Iketani H, Ohashi H (2001) Pyrus. In: Iwatsuki K, Boufford DE, Ohba H (eds) Flora of Japan IIb. Angiospermae dicotyledoneae archichlamydeae. Kodansha, Tokyo, pp 123–124

    Google Scholar 

  • Iketani K, Yamamoto T, Katayama H, Uematsu C, Mase N, Yoshihiko Sato Y (2010) Introgression between native and prehistorically naturalized (archaeophytic) wild pear (Pyrus spp.) populations in Northern Tohoku, Northeast Japan. Conserv Genet 11:115–126

    Article  Google Scholar 

  • Inami K (1966) Geographic distribution of plants in Gifu Prefecture. In: Publication Group of Plants in Gifu, Prefecture (ed) Plants in Gifu Prefecture. Taishu Shobo, Gifu, pp 25–84 (in Japanese)

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol 5:187–189

    Article  CAS  Google Scholar 

  • Kato S, Iwata H, Tsumura Y, Mukai Y (2011) Genetic structure of island populations of Prunus lannesiana var. speciosa revealed by chloroplast DNA, AFLP and nuclear SSR loci analyses. J Plant Res 124:11–23

    Article  PubMed  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic-structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Ministry of the Environment, the Government of Japan (2007) The updated Japanese red lists on mammals, brackish-water/freshwater fishes, insects, shellfish, and plants I and II. http://www.env.go.jp/en/headline/headline.php?serial=503. Accessed 8 June 2011

  • Montalvo AM, Williams SL, Rice KJ, Buchmann SL, Cory C, Handel SN, Nabhan GP, Primack R, Robichaux RH (1997) Restoration biology: a population biology perspective. Restor Ecol 5:277–290

    Article  Google Scholar 

  • Moritz C (1994) Defining evolutionarily significant units for conservation. Trends Ecol Evol 9:373–375

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Newton AC, Allnutt TR, Gillies ACM, Lowe AJ, Ennos RA (1999) Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends Ecol Evol 14:140–145

    Article  PubMed  Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pritchard JK, Wen W, Falush D (2010) Documentation for STRUCTURE software: version 2.3. Available from http://pritch.bsd.uchicago.edu/structure.html

  • Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomes 2:202–224

    Article  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Tani N, Yoshimaru H, Kawahara T, Hoshi Y, Nobushima F, Yasui T (2006) Determination of the genetic structure of remnant Morus boninensis Koidz. trees to establish a conservation program on the Bonin Islands, Japan. BMC Ecol 6:14

    Article  PubMed  Google Scholar 

  • Terachi T (1993) Structural alterations of chloroplast genome and their significance to the higher plant evolution. Bull Inst Natl Land Util Dev Kyoto Sangyo Univ 14:138–148

    Google Scholar 

  • Ueda K (1989) Phylogeography of Tokai hilly land element I. Definition. Acta Phytotax Geobot 40:190–202

    Google Scholar 

  • Ueno S, Setsuko S, Kawahara T, Yoshimaru H (2005) Genetic diversity and differentiation of the endangered Japanese endemic tree Magnolia stellata using nuclear and chloroplast microsatellite markers. Conserv Genet 6:563–574

    Article  CAS  Google Scholar 

  • USDA (2011) United States Department of Agriculture, Agricultural Research Service, National Genetic Resources Program. Germplasm Resources Information Network (GRIN). [Online Database]. National Germplasm Resources Laboratory, Beltsville, Maryland. Available at: http://www.ars-grin.gov/cgi-bin/npgs/html/taxon.pl?30463. Accessed 8 June 2011

  • Vähä JP, Erkinaro J, Niemelä E, Primmer CR (2007) Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Mol Ecol 16:2638–2654

    Article  PubMed  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Wahlund S (1928) Zusammensetzung von Population und Korrelationserscheinung vom Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11:65–106

    Article  Google Scholar 

  • Warnock WG, Rasmussen JB, Taylor EB (2010) Genetic clustering methods reveal bull trout (Salvelinus confluentus) fine-scale population structure as a spatially nested hierarchy. Conserv Genet 11:1421–1433

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Weising K, Gardner R (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Sawamura Y, Kotobuki K, Ban Y, Hayashi T, Matsuta N (2001) SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor Appl Genet 102:865–870

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N (2002a) Simple sequence repeats for genetic analysis in pear. Euphytica 124:129–137

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Shoda M, Ban Y, Hayashi T, Matsuta N (2002b) Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Notes 2:14–16

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N (2002c) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106:9–18

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the following individuals and organizations: Katsurayama Hirotsugu (an advisor for Conservation of Biodiversity in Mie Prefecture), Kawazoe Mamoru (a commissioner of the Council for the Protection of Cultural Properties in Kuwana City), Kanou Akio, Nishimura Kiyoko, Nomura Fumitaka (Toba City Board of Education), Okamura Hiroharu, Yagai Keiko, Aichi-Moriyama Nature Group (Tange Masayoshi, Ishihara Noriyoshi, Isogawa Teruo and Miyake Masao), Shibata Yoshiko (Water Source Forest and Hachiryu Marsh Preservation Group), Muramatsu Masao, Kunimura Keiko (Nagoya Waterfront Research Group), Kato Mitsufumi (Seto Mamenashi Observation Group), the boards of education in Mie Prefecture (especially Nishimura Kazuya) and Kuwana City, Toin Town (especially Ishigami Norichika), Yokkaichi City (especially Ishige Ayako), Taki Town, Tamaki Town, Matsuzaka City and Ise City in Mie Prefecture, and Komaki City, Oguchi Town, Nagoya City, Owariasahi City, Chita City, Handa City, Nishio City and Shinshiro City in Aichi Prefecture and Gifu Prefecture, Yokkaichi City Yamate Junior High School, Mie Prefectural Museum, Toba Hotel International, Eisen-ji Temple, Aichi Prefectural Inuyama Minami Senior High School, Moriyama Civil Engineering Office, Moriyama Civil Environmental Office, Obata Green Spaces and Parks Management Office, Higashiowari Hospital, Higashiyama Zoo and Botanical Gardens, Seto City Suinan Elementary School, Nissin General Sports Park, Chita-Midorihama Factory of Toho Gas Co., Ltd., for their practical help in the sample collection and for provision of information on the trees or habitats. This research was partially supported by the Grant-in-Aid for Scientific Research of the Ministry of Education, Culture, Sports, Science and Technology, Japan, Grant Number: 18580142.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuri Kato.

Additional information

The first two authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, S., Imai, A., Rie, N. et al. Population genetic structure in a threatened tree, Pyrus calleryana var. dimorphophylla revealed by chloroplast DNA and nuclear SSR locus polymorphisms. Conserv Genet 14, 983–996 (2013). https://doi.org/10.1007/s10592-013-0489-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-013-0489-4

Keywords

Navigation