Skip to main content

Advertisement

Log in

Species delimitation in sharpnose sharks (genus Rhizoprionodon) in the western Atlantic Ocean using mitochondrial DNA

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Despite Springer’s (1964) revision of the sharpnose sharks (genus Rhizoprionodon), the taxonomic definition and ranges of Rhizoprionodon in the western Atlantic Ocean remains problematic. In particular, the distinction between Rhizoprionodon terraenovae and R. porosus, and the occurrence of R. terraenovae in South American waters are unresolved issues involving common and ecologically important species in need of fishery management in Caribbean and southwest Atlantic waters. In recent years, molecular markers have been used as efficient tools for the detection of cryptic species and to address controversial taxonomic issues. In this study 415 samples of the genus Rhizoprionodon captured in the western Atlantic Ocean from Florida to southern Brazil were examined for sequences of the COI gene and the D-loop and evaluated for nucleotide differences. The results on nucleotide composition, AMOVA tests, and relationship distances using Bayesian-likelihood method and haplotypes network, corroborates Springer’s (1964) morphometric and meristic finding and provide strong evidence that supports consideration of R. terraenovae and R. porosus as distinct species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abercrombie DL, Clarke SC, Shivji MS (2005) Global-scale genetic identification of hammerhead sharks: application to assessment of the international fin trade and law enforcement. Conserv Genet 6:755–788

    Article  Google Scholar 

  • Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693

    Article  CAS  PubMed  Google Scholar 

  • Bigelow HB, Schroeder WC (1948) Fishes of the western North Atlantic. Part one. Lancelets cyclostomes, sharks. Sears Foundation for Marine Research, Yale University, New Haven, p 576

    Google Scholar 

  • Carlin JL, Robertson DR, Bowen BW (2003) Ancient divergences and recent connections in two tropical Atlantic reef fishes Epinephelus adscensionis and Rypticus saponaceous (Percoidei: Serranidae). Mar Biol 143:1057–1069

    Article  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    Article  CAS  PubMed  Google Scholar 

  • Compagno LJV (1984) FAO species catalogue vol. 4, Part 2 Sharks of the world. An annotated and illustrated catalogue of shark species known to date. FAO Fish Synop 125:251–255

    Google Scholar 

  • Corrigan S, Huveneers C, Schwartz TS, Harcourt RG, Beheregaray LB (2008) Genetic and reproductive evidence for two species of ornate wobbegong shark Orectolobus spp. on the Australian east coast. J Fish Biol 73:1662–1675

    Article  Google Scholar 

  • De-Franco B, Mendonça FF, Hashimoto DT, Porto-Foresti F, Oliveira C, Foresti F (2009) Forensic identification of the guitarfish species Rhinobatos horkelli, R. percellens, and Zapteryx brevirostris using multiplex-PCR. Mol Ecol Resour 10:197–199

    Article  Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) ARLEQUIN ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed  Google Scholar 

  • Gadig OBF (2001) Tubarões da Costa Brasileira. Tese de Doutorado, Unesp, Campus de Rio Claro, São Paulo, p 343

    Google Scholar 

  • Hasegawa M, Kishino K, Yano T (1985) Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  CAS  PubMed  Google Scholar 

  • Hebert PDN, Ratnasingham S, DeWaard JR (2003) Barcoding animal life: cytochrome oxidase subunit 1 divergences among closely related species. Proc R Soc B 270:S96–S99

    Article  CAS  PubMed  Google Scholar 

  • Hoelzel AR, Hancock JM, Dover GA (1991) Evolution of the cetacean mitochondrial D-loop region. Mol Biol Evol 8:475–493

    CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Lopez JV, Culver M, Stephens JC, Johnson WE, O’ Brien SJ (1997) Rates of nuclear and cytoplasmic mitochondrial DNA sequence divergence in mammals. Mol Biol Evol 14:277–286

    CAS  PubMed  Google Scholar 

  • MacVector™ 6.5 (1998) Oxford Molecular Ltd, Oxford, UK

  • Mariguela TC, De-Franco B, Almeida TVV, Mendonça FF, Gadig OBF, Foresti F, Oliveira C (2009) Identification of guitarfish species Rhinobatos percellens, R. horkelli, and Zapteryx brevirostris (Chondrichthyes) using mitochondrial genes and RFLP technique. Conserv Genet Resour 1:393–396

    Article  Google Scholar 

  • Mendonça FF, Hashimoto DT, Porto-Foresti F, Oliveira C, Gadig OBF, Foresti F (2009a) Identification of the shark species Rhizoprionodon lalandii and R. porosus (Elasmobranchii, Carcharhinidae) by multiplex PCR and PCR-RFLP techniques. Mol Ecol Resour 9:771–773

    Article  Google Scholar 

  • Mendonça FF, Oliveira C, Gadig OBF, Foresti F (2009b) Populations analysis of the Brazilian Sharpnose Shark Rhizoprionodon lalandii (Chondrichthyes: Carcharhinidae) on the São Paulo coast, southern Brazil: inferences from mt DNA sequences. Neotrop Ichthyol 7(2):213–216

    Article  Google Scholar 

  • Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. Plos Biol 3:2229–2238

    CAS  Google Scholar 

  • Meyer A, Kocher TD, Basasibwaki P, Wilson AC (1990) Monophyletic origin of Lake Victoria cichlid fishes, suggested by mitochondrial DNA sequence. Nature 347(11):550–553

    Article  CAS  PubMed  Google Scholar 

  • Moura T, Silva MC, Figueiredo I, Neves A, Muñoz PD, Coelho MM, Gordo LS (2008) Molecular barcoding of north-east Atlantic deep-water sharks: species identification and application to fisheries management and conservation. Mar Freshw Res 59:214–223

    Article  CAS  Google Scholar 

  • Murgra B, Tola G, Archer SN, Vallerga S, Hirano J (2002) Genetic identification of grey mullet species (Mugilidae) by analysis of mitochondrial DNA sequence: application to identify the origin of processed ovary products (Bottarga). Mar Biotechnol 4:119–126

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Quattro J, Stoner D, Driggers W, Anderson C, Priede K, Hoppmann E, Campbell N, Duncan K, Grady J (2006) Genetic evidence of cryptic speciation within hammerhead sharks (Genus Sphyrna). Mar Biol 148:1143–1155

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rocha LA, Robertson DR, Roman J, Bowen BW (2005) Ecological speciation in tropical reef fishes. Proc R Soc B 272:573–579

    PubMed  Google Scholar 

  • Rocha-Olivares A, Rosenblatt RH, Vetter RD (1999) Molecular evolution, systematics, and zoogeography of the Rockfish subgenus Sebastomus (Sbastes Scorpaenidae) based on mitochondrial cytochrome b and control region sequences. Mol Phylogenet Evol 11(3):441–458

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Sandoval-Castillo J, Rocha-Olivares A, Villavicencio-Garayzar C, Balrt E (2004) Cryptic isolation of Gulf of California shovelnose guitarfish evidenced by mitochondrial DNA. Mar Biol 145:983–988

    Article  CAS  Google Scholar 

  • Shivji MS, Clarke S, Pank M et al (2002) Genetic identification of pelagic shark body parts for conservation and trade monitoring. Conserv Biol 16:1036–1047

    Article  Google Scholar 

  • Smith WD, Bizzarro JJ, Richards VP, Nielsen J, Marquez-Farias F, Shivji MS (2009) Morphometric convergence and molecular divergence: the taxonomic status and evolutionary history of Gymnura crebripunctata and Gymnura marmorata in the eastern Pacific Ocean. J Fish Biol 75:761–783

    Article  CAS  PubMed  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco, CA

    Google Scholar 

  • Springer VG (1964) A revision of the carcharhinid shark genera Scoliodon, Loxodon, and Rhizoprionodon. Proc US Natl Mus 115:559–632

    Google Scholar 

  • Swofford DL (2004) PAUP—phylogenetic analysis using parsimony and other methods, version 4. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the D-loop of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA 4: Molecular Evolutionary Genetics Analysis (MEGA) Software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotype associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633

    CAS  PubMed  Google Scholar 

  • Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc B 360:1847–1857

    Article  CAS  Google Scholar 

  • Ward RD, Holmes BH, White WT, Last PR (2008) DNA barcoding Australasian chondrichthyans: results and potential uses in conservation. Mar Freshw Res 59:57–71

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by FAPESP—Fundação de Amparo à Pesquisa do Estado de São Paulo (grant no. 06/588972) and CNPq—Brazilian Council for Technological and Scientific Development (grant no. 308439/2006-6). We thank those who collaborated by collecting sharpnose shark specimens and tissue samples, especially Dr. Jason Romine, Msc. Johanna Imhoff, Msc. Ernesto Ron, Dra. Iracilda Sampaio, Msc. Hugo Bornatowski, and the Projeto Cação team Dr. Fábio dos Santos Motta and Dr. Rafael Cabrera Namora.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. F. Mendonça.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendonça, F.F., Oliveira, C., Burgess, G. et al. Species delimitation in sharpnose sharks (genus Rhizoprionodon) in the western Atlantic Ocean using mitochondrial DNA. Conserv Genet 12, 193–200 (2011). https://doi.org/10.1007/s10592-010-0132-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-010-0132-6

Keywords

Navigation