Skip to main content

Advertisement

Log in

Genetic differences between continuous and disjunct populations: some insights from sal (Shorea robusta Roxb.) in Nepal

  • Research article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Sal (Shorea robusta Gaertn., Dipterocarpaceae) is a wind-pollinated tropical tree species found in southern Asia. We investigated the genetic diversity and structure at four microsatellites of 15 populations comprising continuous-peripheral and disjunct-peripheral populations in Nepal. Estimates of genetic diversity (N A = 8.98, H O = 0.62, H E = 0.69) were similar when compared with those of other tropical tree species. A higher level of genetic diversity was observed in continuous-peripheral populations (N A = 9.61, H O = 0.67, H E = 0.72) as compared to disjunct-peripheral (N A = 8.04, H O = 0.55, H E = 0.64). Population differentiation was higher among disjunct-peripheral populations (F ST = 0.043) than among continuous peripherals (F ST = 0.012). There was a significant association between gene flow distances and genetic differentiation (r 2 = 0.128, P ≤ 0.007). No spatial arrangement of populations according to their geographical locations was found. Based on observed genetic diversity protection of some populations in continuous-peripheral range are suggested for the sustainable conservation of genetic resources of the species while protection of some disjunct-peripheral populations are also recommended for conserving rare alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arnaud-Haond S, Teixeira S, Massa SI et al (2006) Genetic structure at range edge: low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Mol Ecol 15:3515–3525. doi:10.1111/j.1365-294X.2006.02997.x

    Article  CAS  PubMed  Google Scholar 

  • Ashton PS (1982) Flora Malesiana. Series I-Spermatophyta. Flowering plants, vol 9, part 2, Dipterocarpaceae. Martinun Nijhoff Pub, The Netherlands

    Google Scholar 

  • Atluri JB, Ramana SPV, Reddi CS (2004) Explosive pollen release, wind-pollination and mixed mating in the tropical tree Shorea robusta Gaertn. f. (Dipterocarpaceae). Curr Sci 86:1416–1419

    Google Scholar 

  • Betancourt JL, Schuster WS, Mitton JB et al (1991) Fossil and genetic history of a pinyon pine (Pinus edutis) isolate. Ecology 72:1685–1697. doi:10.2307/1940968

    Article  Google Scholar 

  • Bohonak AJ (2002) IBD (isolation by distance): a program for analyses of isolation by distance. J Hered 93:153–154. doi:10.1093/jhered/93.2.153

    Article  CAS  PubMed  Google Scholar 

  • Cornuet J, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2005

    CAS  PubMed  Google Scholar 

  • Crandall KA, Bininda-Emonds ORP, Mace GM et al (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295. doi:10.1016/S0169-5347(00)01876-0

    Article  PubMed  Google Scholar 

  • Eckstein RL, O’Neill RA, Danihelka J, Otte A et al (2006) Genetic structure among and within peripheral and central populations of three endangered floodplain violets. Mol Ecol 15:2367–2379. doi:10.1111/j.1365-294X.2006.02944.x

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction sites. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  • FAO (1985) Dipterocarps in South Asia. FAO Regional Office for Asia and Pacific, Bangkok

    Google Scholar 

  • FAO (2006) Global forest resources assessment 2005: progress towards sustainable forest management (FRA 2005). FAO Forestry Paper 147

  • Gapare WJ, Aitken SN, Ritland CE (2005) Genetic diversity of core and peripheral Sitka spruce (Picea sitchensis (Bong.) Carr) populations: implications for conservation of widespread species. Biol Conserv 123:113–123. doi:10.1016/j.biocon.2004.11.002

    Article  Google Scholar 

  • Gautam KH, Devoe NN (2006) Ecological and anthropogenic niches of sal (Shorea robusta Gaertn. f.) forest and prospects for multiple-product forest management—a review. Forestry 79:81–101. doi:10.1093/forestry/cpi063

    Article  Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467. doi:10.1111/j.1461-0248.2005.00739.x

    Article  Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic changes in the quaternary. Philos Trans R Soc Lond B Biol Sci 359:183–195. doi:10.1098/rstb.2003.1388

    Article  CAS  PubMed  Google Scholar 

  • Hunter MJ, Hutchinson A Jr (1994) The virtues and shortcomings of parochialism: conserving species that are locally rare, but globally common. Conserv Biol 8:1163–1165. doi:10.1046/j.1523-1739.1994.08041163.x

    Article  Google Scholar 

  • Jackson JK (1994) Manual of afforestation in Nepal. Forest Research and Survey Centre, Kathmandu

    Google Scholar 

  • Jump AJ, Woodward FI (2003) Seed production and population density decline approaching the range-edge of Cirsium species. New Phytol 160:349–358. doi:10.1046/j.1469-8137.2003.00873.x

    Article  Google Scholar 

  • Karhu A, Hurme P, Karjalainen M et al (1996) Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? Theor Appl Genet 93:215–221. doi:10.1007/BF00225748

    Article  CAS  Google Scholar 

  • Konuma A, Tsumura Y, Lee CT et al (2000) Estimation of gene flow in the tropical-rainforest tree Neobalanocarpus heimii (Dipterocarpacea), inferred from paternity analysis. Mol Ecol 9:1843–1852. doi:10.1046/j.1365-294x.2000.01081.x

    Article  CAS  PubMed  Google Scholar 

  • Lammi A, Siikamäki P, Mustajärvi K (1999) Genetic diversity, population size, and fitness in central and peripheral populations of a rare plant Lychnis viscaria. Conserv Biol 13:1069–1078. doi:10.1046/j.1523-1739.1999.98278.x

    Article  Google Scholar 

  • Lee SL, Tani N, Ng KKS et al (2004) Isolation and characterization of 20 microsatellite loci for an important tropical tree Shorea leprosula (Dipterocarpaceae) and their applicability to S. parvifolia. Mol Ecol Notes 4:222–225. doi:10.1111/j.1471-8286.2004.00623.x

    Article  CAS  Google Scholar 

  • Lemes M, Gribel R, Proctor J et al (2003) Population genetic structure of mahogany (Swietenia macrophylla King, Meliaceae) across the Brazilian Amazon: implications for conservation. Mol Ecol 12:2875–2883. doi:10.1046/j.1365-294X.2003.01950.x

    Article  PubMed  Google Scholar 

  • Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9:753–760. doi:10.1046/j.1523-1739.1995.09040753.x

    Article  Google Scholar 

  • Lim LS, Wickneswari R, Lee SL et al (2002) Genetic variation of Dryobalanops aromatica Gaerfn. F. (Dipterocarpaceae) in Peninsular Malaysia using microsatellite DNA markers. For Genet 9:125–136

    CAS  Google Scholar 

  • Millar CI, Libby WJ (1991) Strategies for conserving clinal, ecotypic, and disjunct population diversity in widespread species. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 149–170

    Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292. doi:10.1086/282771

    Article  Google Scholar 

  • Ng KKS, Lee SL, Koh CL (2004) Spatial structure and genetic diversity of two tropical tree species with contrasting breeding systems and different ploidy levels. Mol Ecol 13:657–669. doi:10.1046/j.1365-294X.2004.02094.x

    Article  PubMed  Google Scholar 

  • Page RDM (1996) Treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Pandey M, Geburek T (2009) Successful cross-amplification of Shorea microsatellites reveals genetic variation in the tropical tree, Shorea robusta. Hereditas 46:29–32

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP version 1.2: population genetics software for the exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Stainton JDA (1972) Forests of Nepal. John Murray, London

    Google Scholar 

  • Suoheimo J, Li CH, Luukkanen O (1999) Isozyme variation of natural populations of sal (Shorea robusta) in the Terai region, Nepal. Silvae Genet 48:199–203

    Google Scholar 

  • Templeton R, Shawe K, Routman E et al (1990) The genetic consequences of habitat fragmentation. Ann Mo Bot Gard 77:13–27. doi:10.2307/2399621

    Article  Google Scholar 

  • Tewari DN (1995) A monograph on sal (Shorea robusta). International Book Distributors, Deharun

    Google Scholar 

  • Tigerstedt PMA (1973) Studies on isozyme variation in marginal and central populations of Picea abies. Hereditas 75:47–60. doi:10.1111/j.1601-5223.1973.tb01141.x

    Article  CAS  PubMed  Google Scholar 

  • Ujino T, Kawahara T, Tsumura Y et al (1998) Development and polymorphism of simple sequence repeat DNA markers for Shorea curtisii and other Dipterocarpaceae species. Heredity 81:422–428. doi:10.1046/j.1365-2540.1998.00423.x

    Article  CAS  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchison WF, Wills DPM et al (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

  • Van Rossum F, Vekemans X, Gratia E et al (2003) A comparative study of allozyme variation of peripheral and central populations of Silene nutans L. (Caryophyllaceae) from Western Europe: implications for conservation. Plant Syst Evol 242:49–61. doi:10.1007/s00606-003-0049-3

    Article  Google Scholar 

  • Volis S, Mendlinger S, Orlovsky N (2000) Variability in phenotypic traits in core and peripheral populations of wild barley Hordeum spontaneum Koch. Hereditas 133:235–247. doi:10.1111/j.1601-5223.2000.00235.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Government of Austria. The first author was formerly a Forest Genetic Resources Fellow supported by Bioversity International. The authors highly acknowledge the support of Mr. Bimal Acharya of Department of Forest Research and Survey, Nepal, and Mr. Sahim Ansari of DFID-Livelihoods and Forestry Programme, Dhankuta, Nepal, for their assistance in material collection. We also thank Dr. Heino Konrad for his critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhav Pandey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, M., Geburek, T. Genetic differences between continuous and disjunct populations: some insights from sal (Shorea robusta Roxb.) in Nepal. Conserv Genet 11, 977–984 (2010). https://doi.org/10.1007/s10592-009-9940-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-009-9940-y

Keywords

Navigation