Skip to main content

Advertisement

Log in

An essay on the necessity and feasibility of conservation genomics

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The basic premise of conservation genetics is that small populations may be genetically threatened. The two steps leading to this premise are: (1) due to prominent influence of random genetic drift and inbreeding allelic and genotypic diversity in small populations is expected to be low, and (2) low allelic diversity and high homozygosity are expected to lead to immediate fitness decreases (inbreeding depression) and a compromised potential for evolutionary adaptation. Conservation genetic research has been strongly stimulated by the application of neutral molecular markers like microsatellites and AFLPs. In general these marker studies have provided evidence for step 1. It is less evident how these markers may provide evidence for step 2. In this essay we argue that, in order to get detailed insight in step 2, adopting a conservation genomic approach, in which conservation genetics will use approaches from ecological and evolutionary functional genomics (ecogenomics), is both necessary and feasible. Conservation genomics is necessary for studying functional genomic variation as function of drift and inbreeding, for studying the mechanisms that relate low genetic variation to low fitness, for integrating environmental and genetic approaches to conservation biology, and for developing modern, fast monitoring tools. The rapid technical and financial developments in genomics currently make conservation genomics feasible, and will improve feasibility in the very near future even further. We therefore argue that conservation genomics personifies part of the near future of conservation genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aguilar A, Roemer G, Debenham S, Binns M, Garcelon D, Wayne RK (2004) High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc Natl Acad Sci USA 101:3490–3494

    Article  CAS  PubMed  Google Scholar 

  • Allendorf FW, Luikart G (2006) Conservation and the genetics of populations. Blackwell, London, UK

    Google Scholar 

  • Aprile A, Mastrangelo AM, De Leonardis AM, Galiba G, Roncaglia E, Ferrari F, De Bellis L, Turchi L, Giulliano G, Cattivelli L (2009) Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genomics 10, article 279

    Google Scholar 

  • Aulchenko YS, Struchalin MV, Belonogova NM, Axenovich TI, Werdon MN, Hofman A, Uitterlinden AG, Kayser M, Oostra BA, van Duijn CM, Janssens ACJW, Borodin PM (2009) Predicting human height by Victorian and genomic methods. Eur J Hum Genet 17:1070–1075

    Article  CAS  PubMed  Google Scholar 

  • Avise JC (2010). Perspective: conservation genetics enters the genomics era. Conserv Genet (this issue). doi:10.1007/s10592-009-0006-y

  • Barrett RDH, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23:38–44

    Article  PubMed  Google Scholar 

  • Baum IB (2008) A restoration genetics guide to coral reef conservation. Mol Ecol 17:2796–2811

    Article  Google Scholar 

  • Beaumont MA, Rannala B (2004) The Bayesian revolution in genetics. Nat Rev Genet 4:251–261

    Article  Google Scholar 

  • Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PW (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960

    Article  CAS  PubMed  Google Scholar 

  • Biron DG, Loxdale HD, Ponton F, Moura H, Marché L, Brugidou C, Thomas F (2006) Population proteomics: an emerging discipline to study metapopulation ecology. Proteomics 6:1712–1715

    Article  CAS  PubMed  Google Scholar 

  • Blödner C, Goebel C, Feussner I, Gatz C, Polle A (2007) Warm and cold parental reproductive environments affect seed properties, fitness, and cold responsiveness in Arabidopsis thaliana progenies. Plant Cell Environ 30:165–175

    Article  PubMed  Google Scholar 

  • Bonin A, Nicole F, Pompanon F, Miaud C, Taberlet P (2007) Population Adaptive Index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Conserv Biol 21:697–708

    Article  PubMed  Google Scholar 

  • Bonnell ML, Selander RK (1974) Elephant seals: genetic variation and near extinction. Science 184:908–909

    Article  Google Scholar 

  • Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115

    PubMed  Google Scholar 

  • Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449

    Article  Google Scholar 

  • Bundy JG, Davey MP, Viant MR (2009) Environmental metabolomics: a critical review and future perspective. Metabolomics 5:3–21

    Article  CAS  Google Scholar 

  • Carr SM, Marshall HD, Duggan AT, Flynn SMC, Johnstone KA, Pope AM, Wilkerson CD (2008) Phylogeographic genomics of mitochondrial DNA: highly-resolved patterns of intraspecific evolution and a multi-species, microarray-based DNA sequencing strategy for biodiversity studies. Comp Biochem Physiol D 3:1–11

    Google Scholar 

  • Castilho PC, Buckley BA, Somero G, Block BA (2009) Heterologous hybridization to a complementary DNA microarray reveals the effect of thermal acclimation in the endothermic bluefin tuna (Thunnus orientalis). Mol Ecol 18:2092–2102

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B, Charlesworth D (1999) The genetic basis of inbreeding depression. Genet Res 74:329–340

    Article  CAS  PubMed  Google Scholar 

  • Chevalier F, Martin O, Rofidal V, Devauchelle A-D, Barteau S, Sommerer N, Rossignol M (2004) Proteomic investigation of natural variation between Arabidopsis ecotypes. Proteomics 4:1372–1381

    Article  CAS  PubMed  Google Scholar 

  • Davey MP, Burrell MM, Woodward FI, Quick WP (2008) Population-specific metabolic phenotypes of Arabidopsis lyrata ssp petraea. New Phytol 177:380–388

    CAS  PubMed  Google Scholar 

  • Ellegren H, Sheldon BC (2008) Genetic basis of fitness differences in natural populations. Nature 452:169–175

    Article  CAS  PubMed  Google Scholar 

  • Erickson DL, Fenster CB, Stenoien HK, Price D (2004) Quantitative trait locus analyses and the study of evolutionary process. Mol Ecol 13:2505–2522

    Article  CAS  PubMed  Google Scholar 

  • Evans EA, Kawli T, Tan MW (2008) Pseudomonas aeruginosa suppresses host immunity by activating the DAF-1 insulin-like signaling pathway in Caenorhabditis elegans. BMC Pathog 4: article e10000175

  • Falk DA, Holsinger KE (eds) (1991) Genetics and conservation of rare plants. Oxford University Press, New York

    Google Scholar 

  • Feder ME, Mitchell-Olds T (2003) Evolutionary and ecological functional genomics. Nat Rev Genet 4:651–657

    Article  CAS  PubMed  Google Scholar 

  • Fields MA, Amyot LM (1999) Epigenetic control of the early flowering in flax lines induced by 5-azacytidine applied to germinating seeds. J Hered 90:199–206

    Article  Google Scholar 

  • Fox CW (2005) Problems in measuring among-family variation in inbreeding depression. Am J Bot 92:1929–1932

    Article  Google Scholar 

  • Frankel OH, Soulé ME (1981) Conservation and evolution. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Franklin IR (1980) Evolutionary change in small populations. In: Soulé ME, Wilcox BA (eds) Conservation biology: an evolutionary-ecological perspective. Sinauer, Sunderland, MA, pp 135–149

    Google Scholar 

  • Garcia-Reyero N, Griffitt RJ, Liu L, Farmerie WG, Barber DS, Denslow ND (2008) Construction of a robust microarray from a non-model species largemouth bass, Micropterus salmoides. J Fish Biol 72:2354–2376

    Article  PubMed  Google Scholar 

  • Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE (2006) Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol 44:489–509

    Article  CAS  PubMed  Google Scholar 

  • Gibson G, Muse SV (2009) A primer of genome science, 3rd edn. Sinauer, Sunderland, MA

    Google Scholar 

  • Halbert ND, Ward TJ, Schnabel RD, Taylor JF, Derr JN (2005) Conservation genomics: disequilibrium mapping of domestic cattle chromosomal segments in North American bison populations. Mol Ecol 14:2343–2362

    Article  CAS  PubMed  Google Scholar 

  • Hale MC, McCormick CR, Jackson JR, DeWoody JA (2009) Next-generation pyrosequencing of gonad transcriptomes in the polyploidy lake sturgeon (Acipenser fulvescens): the relative merits of normalization and rarefaction in gene discovery. BMC Genomics 10, article 203

    Google Scholar 

  • Hedrick PW (1999) Perspective: highly variable loci and their interpretation in evolution and conservation. Evolution 53:313–318

    Google Scholar 

  • Hedrick PW (2001) Conservation genetics: where are we now? Trends Ecol Evol 16:629–636

    Article  Google Scholar 

  • Hermisson J (2009) Who believes in whole-genome scans for selection? Heredity 103:283–284

    Article  CAS  PubMed  Google Scholar 

  • Husband BC, Schemske DW (1996) Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50:54–70

    Article  Google Scholar 

  • Johannes F, Colot V, Jansen RC (2008) Epigenome dynamics: a quantitative genetics perspective. Nat Rev Genet 9:883–890

    Article  CAS  PubMed  Google Scholar 

  • Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, Bulski A, Albuisson J, Heredia F, Audigier P, Bouchez D, Dillman C, Guerche P, Hospital F, Colot V (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PloS Genet 5, article e1000530

  • Johnstone KA, Marshall HD, Carr SM (2007) Biodiversity genomics for species at risk: patterns of DNA sequence variation within and among complete mitochondrial genomes of three species of wolfish (Anarhichas spp.). Can J Zool 85:151–158

    Article  CAS  Google Scholar 

  • Kalisz S, Purugganan MD (2004) Epialleles via DNA methylation: consequences for plant evolution. Trends Ecol Evol 19:309–314

    Article  PubMed  Google Scholar 

  • Kammenga JE, Herman MA, Ouborg NJ, Johnson L, Breitling R (2007) Microarray challenges in ecology. Trends Ecol Evol 22:273–279

    Article  PubMed  Google Scholar 

  • Karhu A, Hurme P, Karjalainen M, Karvonen P, Karkkainen K, Neale D, Savolainen O (1996) Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? Theor Appl Genet 93:215–221

    Google Scholar 

  • Karr TL (2008) Application of proteomics to ecology and population biology. Heredity 100:200–206

    Article  CAS  PubMed  Google Scholar 

  • Kelly JK (2005) Family level inbreeding depression and the evolution of plant mating systems. New Phytol 165:55–62

    Article  PubMed  Google Scholar 

  • Kohn MH, Murphy WJ, Ostrander EA, Wayne RK (2006) Genomics and conservation genetics. Trends Ecol Evol 21:629–637

    Article  PubMed  Google Scholar 

  • Kristensen TN, Sorensen P, Kruhoffer M, Pedersen KS, Loeschcke V (2005) Genome-wide analysis of inbreeding effects on gene expression in Drosophila melanogaster. Genetics 171:157–167

    Article  CAS  PubMed  Google Scholar 

  • Kristensen TN, Sorensen P, Pedersen KS, Kruhoffer M, Loeschcke V (2006) Inbreeding by environmental interactions affect gene expression in Drosophila melanogaster. Genetics 173:1329–1336

    Article  CAS  PubMed  Google Scholar 

  • Lacy RC (1993) Vortex—a computer-simulation model for population viability analysis. Wildl Res 20:45–65

    Article  Google Scholar 

  • Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460

    Article  CAS  PubMed  Google Scholar 

  • Landweber LF, Dobson AP (1999) Genetics and the extinction of species. Princeton University Press, Princeton

    Google Scholar 

  • Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness, and genetic variation? J Ecol 94:942–952

    Article  Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994

    Article  CAS  PubMed  Google Scholar 

  • Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Ann Bot 94:481–495

    Article  CAS  PubMed  Google Scholar 

  • Merilä J, Crnokrak P (2001) Comparison of genetic differentiation at marker loci and quantitative traits. J Evol Biol 14:892–903

    Article  Google Scholar 

  • Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne JK, Willis BL, Matz MV (2009) Sequencing and de novo analysis of a coral larval transcriptome using 454 GLFlx. BMC Genomics 10, article 219

    Google Scholar 

  • Mittelsten Scheid O, Afsar K, Paszkowski J (2003) Formation of stable epialleles and their paramutation-like interaction in tetraploid Arabidopsis thaliana. Nat Genet 34:450–454

    Article  CAS  PubMed  Google Scholar 

  • Mitton JB (1997) Selection in natural populations. Oxford University Press, Oxford, UK

    Google Scholar 

  • Mitton JB, Grant MC (1984) Associations among protein heterozygosity, growth rate, and developmental homeostasis. Annu Rev Ecol Syst 15:479–499

    Article  Google Scholar 

  • Nielsen R (2004) Population genetic analysis of ascertained SNP data. Hum Genomics 1:218–224

    CAS  PubMed  Google Scholar 

  • Novaes E, Drost DR, Farmerie GW, Pappas GJ, Grattapaglia P, Sederoff RR, Kirst M (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9: article 312

  • Ouborg NJ (2009) Integrating population genetics and conservation biology in the era of genomics. Biol Lett. doi:10.1098/rsbl.2009.0590

  • Ouborg NJ, Vriezen WH (2007) An ecologist’s guide to ecogenomics. J Ecol 95:8–16

    Article  CAS  Google Scholar 

  • Ouborg NJ, Piquot Y, Van Groenendael JM (1999) Population genetics, molecular markers and the study of dispersal in plants. J Ecol 87:551–568

    Article  Google Scholar 

  • Ouborg NJ, Biere A, Mudde CL (2000) Inbreeding effects on biochemical resistance and transmission-related traits in the Silene-Microbotryum pathosystem. Ecology 81:520–531

    Google Scholar 

  • Ouborg NJ, Vergeer P, Mix C (2006) The rough edges of the conservation genetics paradigm for plants. J Ecol 94:1233–1248

    Article  Google Scholar 

  • Owen J, Hedley BA, Svendsen C, Wren J, Jonker MJ, Hankard PK, Lister LJ, Sturzenbaum SR, Morgan AJ, Spurgeon DJ, Blaxter ML, Kille P (2008) Transcriptome profiling of developmental and xenobiotic responses in a keystone soil animal, the oligochaete annelid Lumbricus rubellus. BMC Genomics 9: article 266

  • Pedersen KS, Kristensen TN, Loeschcke V, Petersen BO, Duus JO, Nielsen NC, Malmendal A (2008) Metabolomic signatures of inbreeding at benign and stressful temperatures in Drosophila melanogaster. Genetics 180:1233–1243

    Article  CAS  PubMed  Google Scholar 

  • Pertoldi C, Bijlsma R, Loeschcke V (2007) Conservation genetics in a globally changing environment: present problems, paradoxes and future challenges. Biodivers Conserv 16:4147–4163

    Article  Google Scholar 

  • Pico FX, Ouborg NJ, Van Groenendael JM (2004) Evaluation of the extent of among-family variation in inbreeding depression in the perennial herb Scabiosa columbaria (Dipsacaceae). Am J Bot 91:1183–1189

    Article  Google Scholar 

  • Porcher E, Giraud T, Lavigne C (2006) Genetic differentiation of neutral markers and quantitative traits in predominantly selfing metapopulations: confronting theory and experiments with Arabidopsis thaliana. Genet Res 97:1–12

    Article  Google Scholar 

  • Primmer CR (2009) From conservation genetics to conservation genomics. Ann N Y Acad Sci 1162:357–368

    Article  CAS  PubMed  Google Scholar 

  • Quail PH (2002) Phytochrome photosensory signaling networks. Nat Rev Mol Cell Biol 3:85–93

    Article  CAS  PubMed  Google Scholar 

  • Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic diversity: a meta-analysis. Evolution 55:1095–1103

    CAS  PubMed  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Richards EJ (2006) Inherited epigenetic variation—revisiting soft inheritance. Nat Rev Genet 7:395–401

    Article  CAS  PubMed  Google Scholar 

  • Roelofs D, Aarts MGM, Schat H, Van Straalen NM (2008) Functional ecological genomics to demonstrate general and specific responses to abiotic stress. Funct Ecol 22:8–18

    Google Scholar 

  • Romanov MN, Koriabine M, Nefedov M, de Jong PJ, Ryder OA (2006) Construction of a Californian condor BAC library and first-generation chicken-condor comparative physical map as an endangered species conservation genomics resource. Genomics 88:711–718

    Article  CAS  PubMed  Google Scholar 

  • Schonewald-Cox CM, Chambers SM, MacBryde B, Thomas WL (1983) Genetics and conservation: a reference for managing wild animal and plant populations. Benjamin/Cummings, Menlo Park, CA

    Google Scholar 

  • Segelbacher G, Höglund J (2009) Ecological genomics and conservation: where do we stand? Genetica 136:387–390

    Article  PubMed  Google Scholar 

  • Shaffer ML (1981) Minimum population sizes for species conservation. Bioscience 31:131–134

    Article  Google Scholar 

  • Slate J (2005) Quantitative trait locus mapping in natural populations: progress, caveats and future directions. Mol Ecol 14:363–379

    Article  CAS  PubMed  Google Scholar 

  • Snoeren TAL, De Jong PW, Dicke M (2007) Ecogenomic approach to the role of herbivore-induced plant volatiles in community ecology. J Ecol 95:17–26

    Article  CAS  Google Scholar 

  • Soulé ME (1987) Viable populations for conservation. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Soulé ME, Wilcox BA (1980) Conservation biology: an evolutionary-ecological perspective. Sinauer, Sunderland, MA

    Google Scholar 

  • Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA 101:15261–15264

    Article  CAS  PubMed  Google Scholar 

  • Thornhill NW (1993) The natural history of inbreeding and outbreeding: theoretical and empirical perspectives. Chicago University Press, Chicago

    Google Scholar 

  • Toth AL, Varala K, Newman TC, Miguez FE, Hutchison SK, Willoughby DA, Simons JF, Egholm M, Hunt JH, Hudson ME, Robinson GE (2007) Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science 318:441–444

    Article  CAS  PubMed  Google Scholar 

  • Väli Ü, Einarsson A, Waits L, Ellegren H (2008) To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations? Mol Ecol 17:3808–3817

    Article  PubMed  Google Scholar 

  • Van Straalen NM, Roelofs D (2006) An introduction to ecological genomics. Oxford University Press, Oxford, UK

    Google Scholar 

  • Vasemägi A, Nilsson J, Primmer CR (2005a) Expressed sequence tag-linked microsatellites as a sourse of gene-associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.). Mol Biol Evol 22:1067–1076

    Article  PubMed  Google Scholar 

  • Vasemägi A, Nilsson J, Primmer CR (2005b) Seventy-six EST-linked Atlantic salmon (Salmo salar L.) microsatellite markers and their cross-species amplification in five other salmonids. Mol Ecol Notes 5:282–288

    Article  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu DY, Paulsen I, Nelson KE, Nelson W, Fonts DE, Levy S, Knap AH, LOmas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  CAS  PubMed  Google Scholar 

  • Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17:1636–1647

    Article  CAS  PubMed  Google Scholar 

  • Vergeer P, Rengelink R, Copal A, Ouborg NJ (2003) The interacting effects of genetic variation, habitat quality and population size on performance of Succisa pratensis. J Ecol 91:18–26

    Article  CAS  Google Scholar 

  • Vogel TM, Simonet P, Jansson JK, Hirsch PR, Tiedje JM, Van Elsas JD, Bailey MJ, Nalin R, Philippot L (2009) TerraGenome: a consortium for sequencing of a soil metagenome. Nat Rev Microbiol 7:252–253

    Article  CAS  Google Scholar 

  • Wan QH, Wu H, Fujihara T, Fang SG (2004) Which genetic marker for which conservation genetics issue? Electrophoresis 25:2165–2176

    Article  CAS  PubMed  Google Scholar 

  • Weston DJ, Gunter LE, Rogers A, Wullschleger SD (2008) Connecting genes, coexpression modules and molecular signatures to environmental stress phenotypes in plants. BMC Syst Biol 2:16

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This essay has profited from discussions with attendants of the ESF-CONGEN meeting “Integrating Population Genetics and Conservation Biology”, 23-26 May 2009, Trondheim Norway. We want to especially thank John Avise, Dick Frankham, Phil Hedrick, Kuke Bijlsma, Bob Wayne and Torsten Kristensen for discussions and suggestions, and two anonymous reviewers for helpful suggestions. The views expressed in this essay are exclusively the responsibility of the authors. We would like to acknowledge the financial support of the ESF-CONGEN program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Joop Ouborg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joop Ouborg, N., Angeloni, F. & Vergeer, P. An essay on the necessity and feasibility of conservation genomics. Conserv Genet 11, 643–653 (2010). https://doi.org/10.1007/s10592-009-0016-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-009-0016-9

Keywords

Navigation