Conservation Genetics

, Volume 10, Issue 4, pp 815–826 | Cite as

Genetic structure of the northwestern Russian wolf populations and gene flow between Russia and Finland

  • Jouni AspiEmail author
  • Eeva Roininen
  • Jukka Kiiskilä
  • Minna Ruokonen
  • Ilpo Kojola
  • Leo Bljudnik
  • Pjotr Danilov
  • Samuli Heikkinen
  • Erkki Pulliainen
Research Article


We examined the genetic diversity and structure of wolf populations in northwestern Russia. Populations in Republic of Karelia and Arkhangelsk Oblast were sampled during 1995–2000, and 43 individuals were genotyped with 10 microsatellite markers. Moreover, 118 previously genotyped wolves from the neighbouring Finnish population were used as a reference population. A relatively large amount of genetic variation was found in the Russian populations, and the Karelian wolf population tended to be slightly more polymorphic than the Arkhangelsk population. We found significant inbreeding (F = 0.094) in the Karelian, but not in the Arkhangelsk population. The effective size estimates of the Karelian wolf population based on the approximate Bayesian computation and linkage disequilibrium methods were 39.9 and 46.7 individuals, respectively. AMOVA-analysis and exact test of population differentiation suggested clear differentiation between the Karelian, Arkhangelsk and Finnish wolf populations. Indirect estimates of gene flow based on the level of population differentiation (ϕ ST  = 0.152) and frequency of private alleles (0.029) both suggested a low level of gene flow between the populations (Nm = 1.4 and Nm = 3.7, respectively). Assignment analysis of Karelian and Finnish populations suggested an even lower number of recent migrants (less than 0.03) between populations, with a larger amount of migration from Finland to Karelia than vice versa. Our findings emphasise the role of physical obstacles and territorial behaviour in creating barriers to gene flow between populations in relatively limited geographical areas, even in large-bodied mammalian species with long-distance dispersal capabilities and an apparently continuous population structure.


Large carnivore Bottleneck Genetic differentiation Migration Barrier to gene flow Effective population size 


  1. Anonymous (2005) Management plan for the wolf population in Finland. Ministry of Agriculture and Forestry Publications 11b/2005. Available at: Accessed 14 July 2008
  2. Aspi J, Roininen E, Ruokonen M, Kojola I, Vilà C (2006) Genetic diversity, population structure, effective population size, and demographic history of the Finnish wolf population. Mol Ecol 15:1561–1576. doi: 10.1111/j.1365-294X.2006.02877.x PubMedCrossRefGoogle Scholar
  3. Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025–2035PubMedGoogle Scholar
  4. Belkhir K, Borsa P, Chikhi L, Raufaste N, Catch F (2004) Genetix, Software under Windows™ for the genetics of the populations. Laboratory genome, populations, interactions, CNRS UMR 5000. University of Montpellier II, Montpellier, FranceGoogle Scholar
  5. Bensch S, Andrén H, Hansson B, Pedersen HC, Sand H, Sejberg D et al (2007) Selection for heterozygosity gives hope to a wild population of inbred wolves. PLoS ONE 1:e72. doi: 10.1371/journal.pone.0000072 CrossRefGoogle Scholar
  6. Berry O, Tocher MD, Sarre SD (2004) Can assignment tests measure dispersal? Mol Ecol 13:551–561. doi: 10.1046/j.1365-294X.2004.2081.x PubMedCrossRefGoogle Scholar
  7. Black WC, Kraftsur ES (1985) A FORTRAN programme for the calculation and analysis of two-locus linkage disequilibrium coefficients. Theor Appl Genet 70:491–496. doi: 10.1007/BF00305981 CrossRefGoogle Scholar
  8. Boitani L (2003) Wolf conservation and recovery. In: Mech LD, Boitani L (eds) Wolves. Behavior, ecology and conservation. University of Chicago Press, Chicago, pp 317–340Google Scholar
  9. Carmichael LE, Nagy JA, Larter NC, Strobeck C (2001) Prey specialization may influence patterns of gene flow in wolves of the Canadian Northwest. Mol Ecol 10:2787–2798PubMedGoogle Scholar
  10. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  11. Danilov PI (2005) Game animals of Karelia. Ecology, resources, management, protection. Nauka, Moscow 338 pp (in Russian)Google Scholar
  12. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  13. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure from multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  14. Francisco LV, Langston AA, Mellersh CS, Neal CL, Ostrander EA (1996) A class of highly polymorphic tetranucleotide repeats for canine genetic mapping. Mamm Genome 7:359–362. doi: 10.1007/s003359900104 PubMedCrossRefGoogle Scholar
  15. Fredholm M, Winterø AK (1995) Variation of short tandem repeats within and between species belonging to the Canidae family. Mamm Genome 6:11–18. doi: 10.1007/BF00350887 PubMedCrossRefGoogle Scholar
  16. Garza C, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318. doi: 10.1046/j.1365-294x.2001.01190.x PubMedCrossRefGoogle Scholar
  17. Geffen E, Anderson MJ, Wayne RK (2004) Climate and habitat barriers to dispersal in the highly mobile grey wolf. Mol Ecol 13:2481–2491. doi: 10.1111/j.1365-294X.2004.02244.x PubMedCrossRefGoogle Scholar
  18. Goudet J (2001) FSTAT: a program to estimate and test gene diversities and fixation indices (version 2.9.3)Google Scholar
  19. Harley E (2004) AGARst: a program for calculating Allele frequencies, Gst and Rst from microsatellite data and outputting files formatted for other programs such as ‘genepop’ and ‘rstcalc’. Accessed 6 Dec 2006
  20. Kojola I, Määttä E (2004) Suurpetojen lukumäärä ja lisääntyminen vuonna 2003 (The number and reproduction of large carnivores in Finland in 2003). Riistantutkimuksen Tiedote 194:1–7 (in Finnish)Google Scholar
  21. Kojola I, Aspi J, Hakala A, Heikkinen S, Ilmoni C, Ronkainen S (2006) Dispersal in an expanding wolf population. J Mammal 87:281–286. doi: 10.1644/05-MAMM-A-061R2.1 CrossRefGoogle Scholar
  22. Laikre L (1999) Conservation genetics of Nordic carnivores: lessons from zoos. Hereditas 130:203–216. doi: 10.1111/j.1601-5223.1999.00203.x PubMedCrossRefGoogle Scholar
  23. Liberg O (2005) Genetic aspects of viability in small wolf populations with special emphasis on the Scandinavian wolf population. Report no 5436. The Swedish Environmental Protection AgencyGoogle Scholar
  24. Liberg O, Andre’n H, Pedersen HC et al (2005) Severe inbreeding depression in a wild wolf Canis lupus population. Biol Lett 1:17–20. doi: 10.1098/rsbl.2004.0266 PubMedCrossRefGoogle Scholar
  25. Lucchini V, Galov A, Randi E (2004) Evidence of genetic distinction and long-term population decline in wolves (Canis lupus) in the Italian Apennines. Mol Ecol 13:523–536. doi: 10.1046/j.1365-294X.2004.02077.x PubMedCrossRefGoogle Scholar
  26. Manel S, Gaggiotti OE, Waples RS (2005) Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20:136–142. doi: 10.1016/j.tree.2004.12.004 PubMedCrossRefGoogle Scholar
  27. Miller CR, Joyce P, Waits LP (2002) Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics 160:357–366PubMedGoogle Scholar
  28. Musiani M, Leonard JA, Cluff HD, Gates CC, Mariani S, Paquet PC et al (2007) Differentiation of tundra/taiga and boreal coniferous forest wolves: genetics, coat colour and association with migratory caribou. Mol Ecol 16:4149–4170. doi: 10.1111/j.1365-294X.2007.03458.x PubMedCrossRefGoogle Scholar
  29. Neigel JE (1997) A comparison of alternative strategies for estimating gene flow from genetic markers. Annu Rev Ecol Syst 28:105–128. doi: 10.1146/annurev.ecolsys.28.1.105 CrossRefGoogle Scholar
  30. Ostrander EA, Sprague GF, Rine J (1993) Identification and characterization of dinucleotide repeat (ca)n markers for genetic mapping in dog. Genomics 16:207–213. doi: 10.1006/geno.1993.1160 PubMedCrossRefGoogle Scholar
  31. Packard J (2003) Wolf behavior: reproductive, social, and intelligent. In: Mech LD, Boitani L (eds) Wolves. Behavior, ecology, and conservation. University of Chicago Press, Chicago, pp 35–65Google Scholar
  32. Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65. doi: 10.1046/j.1365-294X.2004.02008.x PubMedCrossRefGoogle Scholar
  33. Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855. doi: 10.1046/j.1523-1739.1998.96489.x CrossRefGoogle Scholar
  34. Pilot M, Jedrzejewski W, Branicki W, Sidorovich VE, Jedrzejewska B, Stachura K et al (2007) Ecological factors influence population genetic structure of European grey wolves. Mol Ecol 15:4533–4553. doi: 10.1111/j.1365-294X.2006.03110.x CrossRefGoogle Scholar
  35. Piry S, Alapetite A, Cornuet JM et al (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539. doi: 10.1093/jhered/esh074 PubMedCrossRefGoogle Scholar
  36. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  37. Pulliainen E (1965) Studies on the wolves (Canis lupus L.) in Finland. Ann Zool Fenn 2:215–259Google Scholar
  38. Pulliainen E (1980) The status, structure and behaviour of the wolf (Canis lupus L.) along the Fenno-Soviet border. Ann Zool Fenn 17:107–112Google Scholar
  39. Räikkönen J, Bignert A, Mortensen P, Fernholm B (2006) Congenital defects in a highly inbred wild wolf population (Canis lupus). Mamm Biol 71:65–73. doi: 10.1016/j.mambio.2005.12.002 CrossRefGoogle Scholar
  40. Ramirez O, Altet L, Enseñat C, Vilà C, Sanchez A, Ruiz A (2006) Genetic assessment of the Iberian wolf Canis lupus signatus captive breeding program. Conserv Genet 7:861–878. doi: 10.1007/s10592-006-9123-z CrossRefGoogle Scholar
  41. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9221. doi: 10.1073/pnas.94.17.9197 PubMedCrossRefGoogle Scholar
  42. Raymond M, Rousset F (1995a) An exact test for population differentiation. Evolution Int J Org Evolution 49:1280–1283. doi: 10.2307/2410454 Google Scholar
  43. Raymond M, Rousset F (1995b) genepop (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  44. Sacks BN, Mitchell BR, Williams CL, Ernest HB (2005) Coyote movements and social structure along a cryptic population genetic subdivision. Mol Ecol 14:1241–1249. doi: 10.1111/j.1365-294X.2005.02473.x PubMedCrossRefGoogle Scholar
  45. Seddon JM (2005) Canid-specific primers for molecular sexing using tissue or non-invasive samples. Conserv Genet 6:147–149. doi: 10.1007/s10592-004-7734-9 CrossRefGoogle Scholar
  46. Seddon JM, Sundqvist A-K, Björnerfeldt S, Ellegren H (2006) Genetic identification of immigrants to the Scandinavian wolf population. Cons Gen 7:225–230. doi: 10.1007/s10592-005-9001-0 CrossRefGoogle Scholar
  47. Slatkin M (1985) Rare alleles as indicators of gene flow. Evolution Int J Org Evolution 39:53–65. doi: 10.2307/2408516 Google Scholar
  48. Tallmon DA, Koyuk A, Luikart GA, Beaumont MA (2008) ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Resour 8:299–301. doi: 10.1111/j.1471-8286.2007.01997.x CrossRefGoogle Scholar
  49. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  50. Vilà C, Sundqvist A-K, Flagstad Ø, Seddon J, Björnerfeldt S, Kojola I et al (2003) Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proc R Soc Lond B Biol Sci 270:91–97. doi: 10.1098/rspb.2002.2184 CrossRefGoogle Scholar
  51. Wabakken P, Sand H, Kojola I, Zimmermann B, Arnemo JM, Pedersen HC et al (2007) Multistage, long-range natal dispersal by a global positioning system-collared Scandinavian wolf. J Wildl Manage 71:1631–1634. doi: 10.2193/2006-222 CrossRefGoogle Scholar
  52. Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184. doi: 10.1007/s10592-005-9100-y CrossRefGoogle Scholar
  53. Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756. doi: 10.1111/j.1755-0998.2007.02061.x
  54. Walsh PS, Metzger DA, Higuchi R (1991) Chelex® 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513PubMedGoogle Scholar
  55. Weckworth BV, Talbot S, Sage GK, Person DK, Cooks J (2005) A signal for independent coastal and continental histories among North American wolves. Mol Ecol 14:917–930. doi: 10.1111/j.1365-294X.2005.02461.x PubMedCrossRefGoogle Scholar
  56. Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: Fst ≠ 1/(4Nm + 1). Heredity 82:117–125. doi: 10.1038/sj.hdy.6884960 PubMedCrossRefGoogle Scholar
  57. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191PubMedGoogle Scholar
  58. Wolff JO (1997) Population regulation in mammals: an evolutionary perspective. J Anim Ecol 66:1–13. doi: 10.2307/5959 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jouni Aspi
    • 1
    Email author
  • Eeva Roininen
    • 1
  • Jukka Kiiskilä
    • 1
  • Minna Ruokonen
    • 1
  • Ilpo Kojola
    • 2
  • Leo Bljudnik
    • 3
  • Pjotr Danilov
    • 3
  • Samuli Heikkinen
    • 2
  • Erkki Pulliainen
    • 1
  1. 1.Department of BiologyUniversity of OuluOuluFinland
  2. 2.Finnish Game and Fisheries Research InstituteOulu Game and Fisheries ResearchOuluFinland
  3. 3.Institute of BiologyRussian Academy of Science, Karelian Research CenterPetrozavodskRussia

Personalised recommendations