Skip to main content

Advertisement

Log in

Genetic structure of the northwestern Russian wolf populations and gene flow between Russia and Finland

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

We examined the genetic diversity and structure of wolf populations in northwestern Russia. Populations in Republic of Karelia and Arkhangelsk Oblast were sampled during 1995–2000, and 43 individuals were genotyped with 10 microsatellite markers. Moreover, 118 previously genotyped wolves from the neighbouring Finnish population were used as a reference population. A relatively large amount of genetic variation was found in the Russian populations, and the Karelian wolf population tended to be slightly more polymorphic than the Arkhangelsk population. We found significant inbreeding (F = 0.094) in the Karelian, but not in the Arkhangelsk population. The effective size estimates of the Karelian wolf population based on the approximate Bayesian computation and linkage disequilibrium methods were 39.9 and 46.7 individuals, respectively. AMOVA-analysis and exact test of population differentiation suggested clear differentiation between the Karelian, Arkhangelsk and Finnish wolf populations. Indirect estimates of gene flow based on the level of population differentiation (ϕ ST  = 0.152) and frequency of private alleles (0.029) both suggested a low level of gene flow between the populations (Nm = 1.4 and Nm = 3.7, respectively). Assignment analysis of Karelian and Finnish populations suggested an even lower number of recent migrants (less than 0.03) between populations, with a larger amount of migration from Finland to Karelia than vice versa. Our findings emphasise the role of physical obstacles and territorial behaviour in creating barriers to gene flow between populations in relatively limited geographical areas, even in large-bodied mammalian species with long-distance dispersal capabilities and an apparently continuous population structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anonymous (2005) Management plan for the wolf population in Finland. Ministry of Agriculture and Forestry Publications 11b/2005. Available at: http://wwwb.mmm.fi/julkaisut/julkaisusarja/2005/MMMjulkaisu2005_11b.pdf. Accessed 14 July 2008

  • Aspi J, Roininen E, Ruokonen M, Kojola I, Vilà C (2006) Genetic diversity, population structure, effective population size, and demographic history of the Finnish wolf population. Mol Ecol 15:1561–1576. doi:10.1111/j.1365-294X.2006.02877.x

    Article  PubMed  CAS  Google Scholar 

  • Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025–2035

    PubMed  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Catch F (2004) Genetix 4.0.5.2., Software under Windows™ for the genetics of the populations. Laboratory genome, populations, interactions, CNRS UMR 5000. University of Montpellier II, Montpellier, France

    Google Scholar 

  • Bensch S, Andrén H, Hansson B, Pedersen HC, Sand H, Sejberg D et al (2007) Selection for heterozygosity gives hope to a wild population of inbred wolves. PLoS ONE 1:e72. doi:10.1371/journal.pone.0000072

    Article  Google Scholar 

  • Berry O, Tocher MD, Sarre SD (2004) Can assignment tests measure dispersal? Mol Ecol 13:551–561. doi:10.1046/j.1365-294X.2004.2081.x

    Article  PubMed  Google Scholar 

  • Black WC, Kraftsur ES (1985) A FORTRAN programme for the calculation and analysis of two-locus linkage disequilibrium coefficients. Theor Appl Genet 70:491–496. doi:10.1007/BF00305981

    Article  Google Scholar 

  • Boitani L (2003) Wolf conservation and recovery. In: Mech LD, Boitani L (eds) Wolves. Behavior, ecology and conservation. University of Chicago Press, Chicago, pp 317–340

    Google Scholar 

  • Carmichael LE, Nagy JA, Larter NC, Strobeck C (2001) Prey specialization may influence patterns of gene flow in wolves of the Canadian Northwest. Mol Ecol 10:2787–2798

    PubMed  CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Danilov PI (2005) Game animals of Karelia. Ecology, resources, management, protection. Nauka, Moscow 338 pp (in Russian)

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure from multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Francisco LV, Langston AA, Mellersh CS, Neal CL, Ostrander EA (1996) A class of highly polymorphic tetranucleotide repeats for canine genetic mapping. Mamm Genome 7:359–362. doi:10.1007/s003359900104

    Article  PubMed  CAS  Google Scholar 

  • Fredholm M, Winterø AK (1995) Variation of short tandem repeats within and between species belonging to the Canidae family. Mamm Genome 6:11–18. doi:10.1007/BF00350887

    Article  PubMed  CAS  Google Scholar 

  • Garza C, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318. doi:10.1046/j.1365-294x.2001.01190.x

    Article  PubMed  CAS  Google Scholar 

  • Geffen E, Anderson MJ, Wayne RK (2004) Climate and habitat barriers to dispersal in the highly mobile grey wolf. Mol Ecol 13:2481–2491. doi:10.1111/j.1365-294X.2004.02244.x

    Article  PubMed  CAS  Google Scholar 

  • Goudet J (2001) FSTAT: a program to estimate and test gene diversities and fixation indices (version 2.9.3)

  • Harley E (2004) AGARst: a program for calculating Allele frequencies, Gst and Rst from microsatellite data and outputting files formatted for other programs such as ‘genepop’ and ‘rstcalc’. http://web.uct.ac.za/depts/chempath/genetic.htm. Accessed 6 Dec 2006

  • Kojola I, Määttä E (2004) Suurpetojen lukumäärä ja lisääntyminen vuonna 2003 (The number and reproduction of large carnivores in Finland in 2003). Riistantutkimuksen Tiedote 194:1–7 (in Finnish)

    Google Scholar 

  • Kojola I, Aspi J, Hakala A, Heikkinen S, Ilmoni C, Ronkainen S (2006) Dispersal in an expanding wolf population. J Mammal 87:281–286. doi:10.1644/05-MAMM-A-061R2.1

    Article  Google Scholar 

  • Laikre L (1999) Conservation genetics of Nordic carnivores: lessons from zoos. Hereditas 130:203–216. doi:10.1111/j.1601-5223.1999.00203.x

    Article  PubMed  CAS  Google Scholar 

  • Liberg O (2005) Genetic aspects of viability in small wolf populations with special emphasis on the Scandinavian wolf population. Report no 5436. The Swedish Environmental Protection Agency

  • Liberg O, Andre’n H, Pedersen HC et al (2005) Severe inbreeding depression in a wild wolf Canis lupus population. Biol Lett 1:17–20. doi:10.1098/rsbl.2004.0266

    Article  PubMed  CAS  Google Scholar 

  • Lucchini V, Galov A, Randi E (2004) Evidence of genetic distinction and long-term population decline in wolves (Canis lupus) in the Italian Apennines. Mol Ecol 13:523–536. doi:10.1046/j.1365-294X.2004.02077.x

    Article  PubMed  CAS  Google Scholar 

  • Manel S, Gaggiotti OE, Waples RS (2005) Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20:136–142. doi:10.1016/j.tree.2004.12.004

    Article  PubMed  Google Scholar 

  • Miller CR, Joyce P, Waits LP (2002) Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics 160:357–366

    PubMed  Google Scholar 

  • Musiani M, Leonard JA, Cluff HD, Gates CC, Mariani S, Paquet PC et al (2007) Differentiation of tundra/taiga and boreal coniferous forest wolves: genetics, coat colour and association with migratory caribou. Mol Ecol 16:4149–4170. doi:10.1111/j.1365-294X.2007.03458.x

    Article  PubMed  CAS  Google Scholar 

  • Neigel JE (1997) A comparison of alternative strategies for estimating gene flow from genetic markers. Annu Rev Ecol Syst 28:105–128. doi:10.1146/annurev.ecolsys.28.1.105

    Article  Google Scholar 

  • Ostrander EA, Sprague GF, Rine J (1993) Identification and characterization of dinucleotide repeat (ca)n markers for genetic mapping in dog. Genomics 16:207–213. doi:10.1006/geno.1993.1160

    Article  PubMed  CAS  Google Scholar 

  • Packard J (2003) Wolf behavior: reproductive, social, and intelligent. In: Mech LD, Boitani L (eds) Wolves. Behavior, ecology, and conservation. University of Chicago Press, Chicago, pp 35–65

    Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65. doi:10.1046/j.1365-294X.2004.02008.x

    Article  PubMed  CAS  Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855. doi:10.1046/j.1523-1739.1998.96489.x

    Article  Google Scholar 

  • Pilot M, Jedrzejewski W, Branicki W, Sidorovich VE, Jedrzejewska B, Stachura K et al (2007) Ecological factors influence population genetic structure of European grey wolves. Mol Ecol 15:4533–4553. doi:10.1111/j.1365-294X.2006.03110.x

    Article  Google Scholar 

  • Piry S, Alapetite A, Cornuet JM et al (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539. doi:10.1093/jhered/esh074

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Pulliainen E (1965) Studies on the wolves (Canis lupus L.) in Finland. Ann Zool Fenn 2:215–259

    Google Scholar 

  • Pulliainen E (1980) The status, structure and behaviour of the wolf (Canis lupus L.) along the Fenno-Soviet border. Ann Zool Fenn 17:107–112

    Google Scholar 

  • Räikkönen J, Bignert A, Mortensen P, Fernholm B (2006) Congenital defects in a highly inbred wild wolf population (Canis lupus). Mamm Biol 71:65–73. doi:10.1016/j.mambio.2005.12.002

    Article  Google Scholar 

  • Ramirez O, Altet L, Enseñat C, Vilà C, Sanchez A, Ruiz A (2006) Genetic assessment of the Iberian wolf Canis lupus signatus captive breeding program. Conserv Genet 7:861–878. doi:10.1007/s10592-006-9123-z

    Article  Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9221. doi:10.1073/pnas.94.17.9197

    Article  PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995a) An exact test for population differentiation. Evolution Int J Org Evolution 49:1280–1283. doi:10.2307/2410454

    Google Scholar 

  • Raymond M, Rousset F (1995b) genepop (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Sacks BN, Mitchell BR, Williams CL, Ernest HB (2005) Coyote movements and social structure along a cryptic population genetic subdivision. Mol Ecol 14:1241–1249. doi:10.1111/j.1365-294X.2005.02473.x

    Article  PubMed  CAS  Google Scholar 

  • Seddon JM (2005) Canid-specific primers for molecular sexing using tissue or non-invasive samples. Conserv Genet 6:147–149. doi:10.1007/s10592-004-7734-9

    Article  Google Scholar 

  • Seddon JM, Sundqvist A-K, Björnerfeldt S, Ellegren H (2006) Genetic identification of immigrants to the Scandinavian wolf population. Cons Gen 7:225–230. doi:10.1007/s10592-005-9001-0

    Article  Google Scholar 

  • Slatkin M (1985) Rare alleles as indicators of gene flow. Evolution Int J Org Evolution 39:53–65. doi:10.2307/2408516

    Google Scholar 

  • Tallmon DA, Koyuk A, Luikart GA, Beaumont MA (2008) ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Resour 8:299–301. doi:10.1111/j.1471-8286.2007.01997.x

    Article  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

  • Vilà C, Sundqvist A-K, Flagstad Ø, Seddon J, Björnerfeldt S, Kojola I et al (2003) Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proc R Soc Lond B Biol Sci 270:91–97. doi:10.1098/rspb.2002.2184

    Article  Google Scholar 

  • Wabakken P, Sand H, Kojola I, Zimmermann B, Arnemo JM, Pedersen HC et al (2007) Multistage, long-range natal dispersal by a global positioning system-collared Scandinavian wolf. J Wildl Manage 71:1631–1634. doi:10.2193/2006-222

    Article  Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184. doi:10.1007/s10592-005-9100-y

    Article  Google Scholar 

  • Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756. doi:10.1111/j.1755-0998.2007.02061.x

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex® 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    PubMed  CAS  Google Scholar 

  • Weckworth BV, Talbot S, Sage GK, Person DK, Cooks J (2005) A signal for independent coastal and continental histories among North American wolves. Mol Ecol 14:917–930. doi:10.1111/j.1365-294X.2005.02461.x

    Article  PubMed  CAS  Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: Fst ≠ 1/(4Nm + 1). Heredity 82:117–125. doi:10.1038/sj.hdy.6884960

    Article  PubMed  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  Google Scholar 

  • Wolff JO (1997) Population regulation in mammals: an evolutionary perspective. J Anim Ecol 66:1–13. doi:10.2307/5959

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jouni Aspi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aspi, J., Roininen, E., Kiiskilä, J. et al. Genetic structure of the northwestern Russian wolf populations and gene flow between Russia and Finland. Conserv Genet 10, 815–826 (2009). https://doi.org/10.1007/s10592-008-9642-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-008-9642-x

Keywords

Navigation