Skip to main content

Advertisement

Log in

Conservation of Atlantic sturgeon Acipenser oxyrinchus oxyrinchus: delineation of stock structure and distinct population segments

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The anadromous Atlantic sturgeon Acipenser oxyrinchus oxyrinchus, a wide-ranging species along the Atlantic Coast of North America, is being considered for federal listing under the U.S. Endangered Species Act. Identification of distinct population segments (DPS) is necessary but problematic for highly vagile species such as Atlantic sturgeon which may spend a high proportion of their lives outside of their natal estuaries. Characterization of genetic differentiation and estimates of gene flow provide a quantitative measure of the number of DPS into which species could be divided over their distribution and the reproductive independence of each unit. We sequenced a portion of the mitochondrial DNA control region to characterize population structure and gene flow across all naturally reproducing populations from which specimens could be obtained. We then considered these genetic data along with ancillary information on life history characteristics, historical fisheries data, and trajectories of abundance to determine the number of DPS into which this species should be divided. Our results suggest that philopatry is high for Atlantic sturgeon and that each U.S. estuary analyzed hosts genetically distinct populations of Atlantic sturgeon. We conclude that at least nine DPS of Atlantic sturgeon exist along the Atlantic Coast of the U.S. In contrast, the Atlantic Sturgeon Status Review Team has proposed a five DPS scheme for this subspecies based largely on results from nuclear DNA microsatellites, but with fewer populations represented and lower samples sizes. These different conclusions illustrate the somewhat arbitrary nature of the DPS concept, at least as applied to Atlantic sturgeon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ASSRT (Atlantic Sturgeon Status Review Team) (2007) Status review of Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus). Report to the National Marine Fisheries Service, Northeast Regional Office, Gloucester, MA, pp 187

    Google Scholar 

  • Bain MB, Peterson DL, Arend KK, Haley N (1999) Atlantic sturgeon population monitoring for the Hudson River Estuary: sampling design and gear recommendations. Final Report to the Hudson River Fisheries Unit, New York State Department of Environmental Conservation, New Paltz

    Google Scholar 

  • Berg LS (1959) Vernal and hiemal races among anadromous fishes. J Fish Res Bd Canada 16:515–537

    Google Scholar 

  • Bonin A, Nicole F, Popanon F, Miaud C, Taberlet P (2007) Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Cons Biol 21:697–708

    Article  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene geneaologies. Mol Ecol 9:1657–1659

    Article  PubMed  CAS  Google Scholar 

  • Collins R, Rogers SG, Smith TIJ (1996) Bycatch of sturgeons along the Southern Atlantic Coast of the USA. N Am J Fish Manage 16:24–29

    Article  Google Scholar 

  • Dovel WL, Berggren TJ (1983) Atlantic sturgeon of the Hudson River Estuary, New York. NY Fish Game J 30:140–172

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.1: an integrated software package for population genetic analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752

    PubMed  CAS  Google Scholar 

  • Fu Y-X (1997) Statistical tests of neutrality against population growth, hitchhiking and background selection. Genetics 143:557–570

    Google Scholar 

  • Green DM (2005) Designatable units for status assessment of endangered species. Conserv Biol 19:1813–1820

    Article  Google Scholar 

  • Grogan CS, Boreman J (1998) Estimating the probability that historical populations of fish species are extirpated. N Am J Fish Manage 18:522–529

    Article  Google Scholar 

  • Hatin D, Fortin R, Caron F (2002) Movement and aggregation areas of adult Atlantic sturgeon (Acipenser oxyrinchus) in the St. Lawrence River estuary, Quebec, Canada. J Appl Ichthyol 18:586–594

    Article  Google Scholar 

  • Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132:583–589

    PubMed  CAS  Google Scholar 

  • King TL, Lubinski BA, Spidle AP (2001) Microsatellite DNA variation in Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) and cross-species amplification in the Acipenseridae. Conserv Genet 2:103–119

    Article  CAS  Google Scholar 

  • Lee DS, Gilbert CR, Hocutt CH, Jenkins RE, McAllister DE, Stauffer JR Jr (1980) Atlas of North American freshwater fishes. North Carolina State Museum of Natural History, Raleigh

    Google Scholar 

  • Ludwig A, Debus L, Lieckfeldt D, Wirgin I, Benecke N, Jenneckens I, Williot P, Waldman JR, Pitra C (2002) When the American Atlantic sturgeon went East. Nature 419:448–449

    Article  Google Scholar 

  • Mangin E (1964) Croissance en longueur de trois esturgeons d’Amerique du Nord: Acipenser oxyrhynchus, Mitchill, Acipenser fulvescens, Rafinesque, et Acipenser brevirostris LeSueur. Verh Int Ver Limnol 15:968–974

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • McElroy D, Moran P, Bermingham E, Kornfield I (1992) REAP: an integrated environment for the manipulation of and phylogenetic analysis of restriction data. J Hered 83:157–158

    PubMed  CAS  Google Scholar 

  • Miller MP (1997) Tools for population genetic analyses (TFPGA) 1.3; A Windows program for the analysis of allozyme and molecular population genetic data

  • Nei M (1972) Genetic distances between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nielsen R, Wakeley J (2001) Distinguishing migration from isolation: a Markov Chain Monte Carlo approach. Genetics 158:885–896

    PubMed  CAS  Google Scholar 

  • Ong T-L, Stabile J, Waldman JR, Wirgin I (1996) Genetic divergence of Atlantic and Gulf of Mexico sturgeon based on sequence analysis of the mtDNA control region. Copeia 1996:464–469

    Article  Google Scholar 

  • Palsboll PJ, Berube M, Allendorf FW (2006) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16

    Article  PubMed  Google Scholar 

  • Peterson DL, Bain MB, Haley N (2000) Evidence of declining recruitment of Atlantic sturgeon in the Hudson River. N Am J Fish Manage 20:231–238

    Article  Google Scholar 

  • Peterson DL, Schueller P, Fleming J, Grunwald C, Wirgin I (in Press) Biological characteristics and critical habitats of Atlantic sturgeon in the Altamaha River, Georgia. Trans Am Fish Soc

  • Pikitch EK, Doukakis P, Lauck L, Chakrabarty P, Erickson DL (2005) Status, trends and management of sturgeon and paddlefish fisheries. Fish Fish 6:233–265

    Google Scholar 

  • Roff DA, Bentzen P (1989) The statistical analysis of mitochondrial DNA polymorphisms: Χ2 and the problem of small samples. Mol Biol Evol 6:539–545

    PubMed  CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgneson RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Nat Acad Sci USA 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Secor DH (2002) Atlantic sturgeon fisheries and stock abundances during the late nineteenth century. Am Fish Soc Symp 28:89–98

    Google Scholar 

  • Secor DH, Waldman JR (1999) Historical abundance of Delaware Bay Atlantic sturgeon and potential rate of recovery. Am Fish Soc Symp 23:203–216

    Google Scholar 

  • Shirey CA, Martin AC, Stetzar EJ (1999) Atlantic sturgeon abundance and movement in the lower Delaware River. Final Report. NOAA Project No. AGC-9N. Grant No. A86FA0315. Delaware Division of Fish and Wildlife, Dover

  • Smith TIJ (1985) The fishery, biology, and management of Atlantic sturgeon, Acipenser oxyrhynchus, in North America. Environ Biol Fishes 14:61–72

    Article  CAS  Google Scholar 

  • Status Review of Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) September 1998

  • Stein AB, Friedland KD, Sutherland M (2004a) Atlantic sturgeon marine bycatch and mortality on the continental shelf of the northeast United States. N Am J Fish Manage 24:171–183

    Article  Google Scholar 

  • Stein AB, Friedland KD, Sutherland M (2004b) Atlantic sturgeon marine distribution and habitat use along the northeastern coast of the United States. Trans Am Fish Soc 133:527–537

    Article  Google Scholar 

  • Sweka JA, Mohler J, Millard MJ, Kehler T, Kahnle A, Hattala K, Kenney G, Higgs A (in Press) Juvenile Atlantic sturgeon habitat use in Newburgh and Haverstraw Bays of the Hudson River: Implications for population monitoring. N Am J Fish Manage

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Tajima F (1993) Measurement of DNA polymorphism. In: Takahata N, Clark GA (eds) Mechanisms of molecular evolution. Introduction to molecular paleopopulation biology. Japan Scientific Societies Press, Sinaur Associates, Inc., Sunderland, MA

    Google Scholar 

  • Taub SH (1990) Fishery management plan for Atlantic sturgeon (Acipenser oxyrhynchus). Fisheries Management Report No. 17 of Atlantic States Marine Fisheries Commission. pp 73

  • Tiedemann R, Moll K, Paulus KB, Scheer M, Williot P, Bartel R, Gessner J, Kirschbaum F (2007) Atlantic sturgeons (Acipenser sturio, Acipenser oxyrinchus): American females successful in Europe. Naturwissenschaften 94:213–217

    Article  PubMed  CAS  Google Scholar 

  • Waldman JR, Grunwald C, Stabile J, Wirgin I (2002) Impacts of life history and biogeography on genetic stock structure in Atlantic sturgeon, Acipenser oxyrinchus oxyrinchus, Gulf sturgeon A. oxyrinchus desotoi, and shortnose sturgeon, A. brevirostrum. J Appl Ichthyol 18:509–518

    Article  Google Scholar 

  • Waldman JR, Hart J, Wirgin I (1996) Stock composition of the New York Bight Atlantic sturgeon fishery based on analysis of mitochondrial DNA. Trans Am Fish Soc 125:364–371

    Article  CAS  Google Scholar 

  • Waldman JR, Wirgin II (1998) Status and restoration options for Atlantic sturgeon in North America. Atlantic sturgeon in North America: status and restoration options. Conserv Biol 12:631–638

    Article  Google Scholar 

  • Waples RS (1991) Pacific salmon, Oncorhynchus spp., and the definition of “species” under the Endangered Species Act. Mar Fish Rev 53:11–22

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wirgin II, Waldman JR, Rosko JR, Gross R, Collins MR, Rogers SG, Stabile J (2000) Genetic structure of Atlantic sturgeon populations based on mitochondrial DNA control region sequences. Trans Am Fish Soc 129:476–486

    Article  CAS  Google Scholar 

  • Wirgin I, Grunwald C, Waldman JR, Stabile J (2007) Genetic evidence for relict Atlantic sturgeon stocks along the mid-Atlantic coast of the USA. N Am J Fish Manage 27 (in press)

  • Wright (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Google Scholar 

Download references

Acknowledgments

We thank D. Gorham, T. Squiers, S. Nack, G. Murphy, C. Shirey, D. Fox, K. Place, C. Hager, A. Spells, J. Armstrong, J. Hightower, M. Collins, B. Post, J. Fleming, W. Weber, G. Rogers, and D. Peterson for providing the tissue samples analyzed in this study and M. Hickerson for reviewing the manuscript. We also acknowledge support of the Protected Species Division of NMFS, Gloucester, MA, for support of this study, Julie Carter of the NOS/National Centers for Coastal Ocean Science, Marine Forensics Archive for providing archived tissue samples, and the Molecular Facility Core of the NYU NIEHS Center ES00260 for the use of its shared instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Wirgin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grunwald, C., Maceda, L., Waldman, J. et al. Conservation of Atlantic sturgeon Acipenser oxyrinchus oxyrinchus: delineation of stock structure and distinct population segments. Conserv Genet 9, 1111–1124 (2008). https://doi.org/10.1007/s10592-007-9420-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-007-9420-1

Keywords

Navigation