Skip to main content
Log in

Finding the global optimum of a class of quartic minimization problem

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider a special nonconvex quartic minimization problem over a single spherical constraint, which includes the discretized energy functional minimization problem of non-rotating Bose-Einstein condensates (BECs) as one of the important applications. Such a problem is studied by exploiting its characterization as a nonlinear eigenvalue problem with eigenvector nonlinearity (NEPv). Firstly, we show that the NEPv has a unique nonnegative eigenvector, corresponding to the smallest nonlinear eigenvalue of NEPv, which is exactly the global minimizer to the optimization problem. Secondly, with these properties, we obtain that any algorithm converging to the nonnegative stationary point of this optimization problem finds its global optimum, such as the regularized Newton method. In particular, we obtain the convergence to the global optimum of the inexact alternating direction method of multipliers for this problem. Numerical experiments for applications in non-rotating BECs validate our theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article.

References

  1. Aftalion, A., Du, Q.: Vortices in a rotating Bose-Einstein condensate: critical angular velocities and energy diagrams in the Thomas-Fermi regime. Phys. Rev. A 64(6), 063603 (2001). https://doi.org/10.1103/physreva.64.063603

    Article  Google Scholar 

  2. Bai, Z., Lu, D., Vandereycken, B.: Robust rayleigh quotient minimization and nonlinear eigenvalue problems. SIAM J. Sci. Comput. 40(5), A3495–A3522 (2018). https://doi.org/10.1137/18M1167681

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat. Models 6(1), 1–135 (2013). https://doi.org/10.3934/krm.2013.6.1

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, W., Cai, Y.: Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation. Math. Comp. 82(281), 99–128 (2013). https://doi.org/10.1090/S0025-5718-2012-02617-2

    Article  MathSciNet  MATH  Google Scholar 

  5. Bao, W., Chern, I.L., Lim, F.Y.: Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates. J. Comput. Phys. 219(2), 836–854 (2006). https://doi.org/10.1016/j.jcp.2006.04.019

    Article  MathSciNet  MATH  Google Scholar 

  6. Bao, W., Du, Q.: Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comput. 25(5), 1674–1697 (2004). https://doi.org/10.1137/S1064827503422956

    Article  MathSciNet  MATH  Google Scholar 

  7. Bao, W., Tang, W.: Ground-state solution of Bose-Einstein condensate by directly minimizing the energy functional. J. Comput. Phys. 187(1), 230–254 (2003). https://doi.org/10.1016/S0021-9991(03)00097-4

    Article  MathSciNet  MATH  Google Scholar 

  8. Bauschke, H.H., Bui, M.N., Wang, X.: Projecting onto the intersection of a cone and a sphere. SIAM J. Optim 28(3), 2158–2188 (2018). https://doi.org/10.1137/17M1141849

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, Y., Zhang, L.H., Bai, Z., Li, R.C.: On an eigenvector-dependent nonlinear eigenvalue problem. SIAM J. Matrix Anal. Appl. 39(3), 1360–1382 (2018). https://doi.org/10.1137/17M115935X

    Article  MathSciNet  MATH  Google Scholar 

  10. Cancès, E., Chakir, R., Maday, Y.: Numerical analysis of nonlinear eigenvalue problems. J. Sci. Comput. 45(1–3), 90–117 (2010). https://doi.org/10.1007/s10915-010-9358-1

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang, K.C., Pearson, K., Zhang, T.: Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6(2), 507–520 (2008). https://doi.org/10.4310/CMS.2008.v6.n2.a12

    Article  MathSciNet  MATH  Google Scholar 

  12. Choi, Y., Koltracht, I., McKenna, P.: A generalization of the Perron-Frobenius theorem for non-linear perturbations of stiltjes matrices. Contemp. Math. 281, 325–330 (2001)

    Article  MathSciNet  Google Scholar 

  13. Choi, Y., Koltracht, I., McKenna, P., Savytska, N.: Global monotone convergence of newton iteration for a nonlinear eigen-problem. Linear Algebra Appl. 357(1–3), 217–228 (2002). https://doi.org/10.1016/S0024-3795(02)00383-X

    Article  MathSciNet  MATH  Google Scholar 

  14. Fetter, A.L.: Rotating trapped Bose-Einstein condensates. Rev. Modern Phys. 81(2), 647–691 (2009). https://doi.org/10.1103/RevModPhys.81.647

    Article  Google Scholar 

  15. He, B., Ma, F., Yuan, X.: Convergence study on the symmetric version of admm with larger step sizes. SIAM J. Imag. Sci. 9(3), 1467–1501 (2016). https://doi.org/10.1137/15M1044448

    Article  MathSciNet  MATH  Google Scholar 

  16. Ho, T.L.: Spinor bose condensates in optical traps. Phys. Rev. Lett. 81(4), 742 (1998). https://doi.org/10.1103/PhysRevLett.81.742

    Article  Google Scholar 

  17. Hu, J., Jiang, B., Liu, X., Wen, Z.: A note on semidefinite programming relaxations for polynomial optimization over a single sphere. Sci. China Math. 59(8), 1543–1560 (2016). https://doi.org/10.1007/s11425-016-0301-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Hu, J., Milzarek, A., Wen, Z., Yuan, Y.: Adaptive quadratically regularized newton method for Riemannian optimization. SIAM J. Matrix Anal. Appl. 39(3), 1181–1207 (2018). https://doi.org/10.1137/17M1142478

    Article  MathSciNet  MATH  Google Scholar 

  19. Jain, P., Kar, P.: Non-convex optimization for machine learning. Found. Trends Mach. Learn. 10(3—-4), 142–336 (2017)

    Article  Google Scholar 

  20. Jia, S., Xie, H., Xie, M., Xu, F.: A full multigrid method for nonlinear eigenvalue problems. Sci. China Math. 59(10), 2037–2048 (2016). https://doi.org/10.1007/s11425-015-0234-x

    Article  MathSciNet  MATH  Google Scholar 

  21. Kollath, C., Schollwöck, U., von Delft, J., Zwerger, W.: One-dimensional density waves of ultracold bosons in an optical lattice. Phys. Rev. A 71(5), 053606 (2005)

    Article  Google Scholar 

  22. Lai, R., Osher, S.: A splitting method for orthogonality constrained problems. J. Sci. Comput. 58(2), 431–449 (2014). https://doi.org/10.1007/s10915-013-9740-x

    Article  MathSciNet  MATH  Google Scholar 

  23. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. opt. 11(3), 796–817 (2001)

    Article  MathSciNet  Google Scholar 

  24. Li, X., Sun, D., Toh, K.C.: Qsdpnal: a two-phase augmented lagrangian method for convex quadratic semidefinite programming. Math. Program. Comput. 10(4), 703–743 (2018). https://doi.org/10.1007/s12532-018-0137-6

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, H., So, A.M.C., Wu, W.: Quadratic optimization with orthogonality constraint: explicit lojasiewicz exponent and linear convergence of retraction-based line-search and stochastic variance-reduced gradient methods. Math. Program. 178(1), 215–262 (2019)

    Article  MathSciNet  Google Scholar 

  26. Luo, Z.Q., Zhang, S.: A semidefinite relaxation scheme for multivariate quartic polynomial optimization with quadratic constraints. SIAM J. Opt. 20(4), 1716–1736 (2010)

    Article  MathSciNet  Google Scholar 

  27. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  28. Pethick, C.J., Smith, H.: Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  29. Sun, J.: When are nonconvex optimization problems not scary? Columbia University (2016)

  30. Sun, J., Qu, Q., Wright, J.: A geometric analysis of phase retrieval. Found. Comput. Math. 18(5), 1131–1198 (2018)

    Article  MathSciNet  Google Scholar 

  31. Varga, R.S.: Matrix Iterative Analysis. Springer, New York (2000)

    Book  Google Scholar 

  32. Wang, Y., Yin, W., Zeng, J.: Global convergence of admm in nonconvex nonsmooth optimization. J. Sci. Comput. 78(1), 29–63 (2019). https://doi.org/10.1007/s10915-018-0757-z

    Article  MathSciNet  MATH  Google Scholar 

  33. Wen, Z., Milzarek, A., Ulbrich, M., Zhang, H.: Adaptive regularized self-consistent field iteration with exact hessian for electronic structure calculation. SIAM J. Sci. Comput. 35(3), A1299–A1324 (2013). https://doi.org/10.1137/120894385

    Article  MathSciNet  MATH  Google Scholar 

  34. Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program. 142(1–2), 397–434 (2013). https://doi.org/10.1007/s10107-012-0584-1

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu, X., Wen, Z., Bao, W.: A regularized newton method for computing ground states of Bose-Einstein condensates. J. Sci. Comput. 73(1), 303–329 (2017). https://doi.org/10.1007/s10915-017-0412-0

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang, Q., Huang, P., Liu, Y.: Numerical examples for solving a class of nonlinear eigenvalue problems. J. Numer. Methods Comput. Appl. 40(2), 130–142 (2019). (in Chinese)

    MathSciNet  MATH  Google Scholar 

  37. Yang, Y., Yang, Q.: On solving biquadratic optimization via semidefinite relaxation. Comput. Opt. Appl. 53(3), 845–867 (2012). https://doi.org/10.1007/s10589-012-9462-2

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, H., Milzarek, A., Wen, Z., Yin, W.: On the geometric analysis of a quartic–quadratic optimization problem under a spherical constraint. Math. Program., 1–53 (2021)

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their suggestions, which help us to improve the paper. And we are grateful to Professor Xinming Wu, Dr. Jinshan Zeng and Dr. Xudong Li for their inspiration and help.

Funding

The first author was supported by the Tianjin Graduate Research and Innovation Project 2019YJSB040. The second author was supported by the National Natural Science Foundation of China Grant 11671217 and 12071234. The third author was supported by the National Natural Science Foundation of China Grant 11801100 and the Fok Ying Tong Education Foundation Grant 171094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhi Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Yang, Q. & Yang, Y. Finding the global optimum of a class of quartic minimization problem. Comput Optim Appl 81, 923–954 (2022). https://doi.org/10.1007/s10589-021-00345-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-021-00345-9

Keywords

Mathematics Subject Classification

Navigation