Skip to main content
Log in

Numerical Analysis of Nonlinear Eigenvalue Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We provide a priori error estimates for variational approximations of the ground state energy, eigenvalue and eigenvector of nonlinear elliptic eigenvalue problems of the form −div(A u)+Vu+f(u 2)u=λ u, \(\|u\|_{L^{2}}=1\). We focus in particular on the Fourier spectral approximation (for periodic problems) and on the ℙ1 and ℙ2 finite-element discretizations. Denoting by (u δ ,λ δ ) a variational approximation of the ground state eigenpair (u,λ), we are interested in the convergence rates of \(\|u_{\delta}-u\|_{H^{1}}\), \(\|u_{\delta}-u\|_{L^{2}}\), |λ δ λ|, and the ground state energy, when the discretization parameter δ goes to zero. We prove in particular that if A, V and f satisfy certain conditions, |λ δ λ| goes to zero as \(\|u_{\delta}-u\|_{H^{1}}^{2}+\|u_{\delta}-u\|_{L^{2}}\). We also show that under more restrictive assumptions on A, V and f, |λ δ λ| converges to zero as \(\|u_{\delta}-u\|_{H^{1}}^{2}\), thus recovering a standard result for linear elliptic eigenvalue problems. For the latter analysis, we make use of estimates of the error u δ u in negative Sobolev norms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis. vol. II, pp. 641–787. North-Holland, Amsterdam (1991)

    Google Scholar 

  2. Cancès, E.: SCF algorithms for Kohn-Sham models with fractional occupation numbers. J. Chem. Phys. 114, 10616–10623 (2001)

    Article  Google Scholar 

  3. Cancès, E., Defranceschi, M., Kutzelnigg, W., Le Bris, C., Maday, Y.: Computational quantum chemistry: a primer. In: Ciarlet, Ph., Le Bris, C. (eds.) Handbook of Numerical Analysis, pp. 3–270. North-Holland, Amsterdam (2003). Special volume: Computational Chemistry, vol. X

    Google Scholar 

  4. Cancès, E., Le Bris, C.: Can we outperform the DIIS approach for electronic structure calculations? Int. J. Quantum Chem. 79, 82–90 (2000)

    Article  Google Scholar 

  5. Cancès, E., Chakir, R., Maday, Y.: Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models. In preparation

  6. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Springer, Berlin (2007)

    MATH  Google Scholar 

  7. Dion, C., Cancès, E.: Spectral method for the time-dependent Gross-Pitaevskii equation with harmonic traps. Phys. Rev. E 67, 046706 (2003)

    Article  Google Scholar 

  8. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Springer, Berlin (2004)

    MATH  Google Scholar 

  9. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 3rd edn. Springer, Berlin (1998)

    Google Scholar 

  10. Pitaevskii, L.P., Stringari, S.: Bose-Einstein Condensation. Clarendon, Oxford (2003)

    MATH  Google Scholar 

  11. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. I. Academic Press, New York (1975)

    MATH  Google Scholar 

  12. Sickel, W.: Superposition of functions in Sobolev spaces of fractional order. A survey. Banach Center Publ. 27, 481–497 (1992)

    MathSciNet  Google Scholar 

  13. Stampacchia, G.: Le probléme de Dirichlet pour les équations elliptiques du second ordre á coefficients discontinues. Ann. Inst. Fourier 15, 189–257 (1965)

    MATH  MathSciNet  Google Scholar 

  14. Zhou, A.: An analysis of finite-dimensional approximations for the ground state solution of Bose-Einstein condensates. Nonlinearity 17, 541–550 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Zhou, A.: Finite dimensional approximations for the electronic ground state solution of a molecular system. Math. Meth. Appl. Sci. 30, 429–447 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvon Maday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cancès, E., Chakir, R. & Maday, Y. Numerical Analysis of Nonlinear Eigenvalue Problems. J Sci Comput 45, 90–117 (2010). https://doi.org/10.1007/s10915-010-9358-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9358-1

Keywords

Navigation