Skip to main content
Log in

A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider the constrained multi-objective optimization problem of finding Pareto critical points of difference of convex functions. The new approach proposed by Bento et al. (SIAM J Optim 28:1104–1120, 2018) to study the convergence of the proximal point method is applied. Our method minimizes at each iteration a convex approximation instead of the (non-convex) objective function constrained to a possibly non-convex set which assures the vector improving process. The motivation comes from the famous Group Dynamic problem in Behavioral Sciences where, at each step, a group of (possible badly informed) agents tries to increase his joint payoff, in order to be able to increase the payoff of each of them. In this way, at each step, this ascent process guarantees the stability of the group. Some encouraging preliminary numerical results are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Apolinário, H.C.F., Papa Quiroz, E.A., Oliveira, P.R.: A scalarization proximal point method for quasiconvex multiobjective minimization. J. Glob. Optim. 64, 79–96 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bačák, M., Borwein, J.M.: On difference convexity of locally Lipschitz functions. Optimization 60, 961–978 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bello Cruz, J.Y.: A subgradient method for vector optimization problems. SIAM J. Optim. 23, 2169–2182 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bento, G.C., Cruz Neto, J.X., López, G., Soubeyran, A., Souza, J.C.O.: The proximal point method for locally Lipschitz functions in multiobjective optimization with application to the compromise problem. SIAM J. Optim. 28(2), 1104–1120 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bento, G.C., Cruz Neto, J.X., Soubeyran, A.: A proximal point-type method for multicriteria optimization. Set-Valued Var. Anal. 22, 557–573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bento, G.C., Cruz Neto, J.X., Oliveira, P.R., Soubeyran, A.: The self regulation problem as an inexact steepest descent method for multicriteria optimization. Eur. J. Oper. Res. 235, 494–502 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bento, G.C., Soubeyran, A.: Generalized inexact proximal algorithms: routine’s formation with resistance to change, following worthwhile changes. J. Optim. Theory Appl. 166, 172–187 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bento, G.C., Soubeyran, A.: A generalized inexact proximal point method for nonsmooth functions that satisfies Kurdyka–Łojasiewicz inequality. Set-Valued Var. Anal. 23, 501–517 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bolte, J., Danilidis, A., Lewis, A., Shiota, M.: Clarke critical values of subanalytic Lipschitz continuous functions. Ann. Polon. Math. 87, 13–25 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonnel, H., Iusem, A.N., Svaiter, B.F.: Proximal methods in vector optimization. SIAM J. Optim. 15, 953–970 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brito, A.S., Cruz Neto, J.X., Santos, P.S.M., Souza, S.S.: A relaxed projection method for solving multiobjective optimization problems. Eur. J. Oper. Res. 256, 17–23 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Burke, J.V., Ferris, M.C., Qian, M.: On the Clarke subdifferential of the distance function of a closed set. J. Math. Anal. Appl. 166, 199–213 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ceng, L.C., Yao, J.C.: Approximate proximal methods in vector optimization. Eur. J. Oper. Res. 183, 1–19 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ceng, L.C., Mordukhovich, B.S., Yao, J.C.: Hybrid approximate proximal method with auxiliary variational inequality for vector optimization. J. Optim. Theory Appl. 146, 267–303 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Choung, T.D., Mordukhovich, B.S., Yao, J.C.: Hybrid approximate proximal algorithms for efficient solutions in vector optimization. J. Nonlinear Convex Anal. 12, 257–286 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Clarke, F.H.: Generalized gradients and applications. Trans. Am. Math. Soc. 205, 247–262 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Clarke, F.H.: Optimization and Nonsmooth Analysis. Classics in Applied Mathematics, vol. 5. Wiley, New York (1990)

    Book  Google Scholar 

  18. Cruz Neto, J.X., Oliveira, P.R., Soubeyran, A, Souza, J.C.O.: A Generalized Proximal Linearized Algorithm for DC Functions with Application to the Optimal Size of the Firm Problem (2018); (preprint)

  19. Cruz Neto, J.X., Silva, G.J.P., Ferreira, O.P., Lopes, J.O.: A subgradient method for multiobjective optimization. Comput. Optim. Appl. 54, 461–472 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dinh, N., Strodiot, J.J., Nguyen, V.H.: Duality and optimality conditions for generalized equilibrium problems involving DC functions. Glob. Optim. 48, 183–208 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ferrer, A., Bagirov, A., Beliakov, G.: Solving DC programs using the cutting angle method. J. Glob. Optim. 61, 71–89 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fliege, J., Graña Drummond, L.M., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim. 20(2), 602–626 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Flores-Bazán, F., Oettli, W.: Simplified optimality conditions for minimizing the difference of vector-valued functions. J. Optim. Theory Appl. 108, 571–586 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fukuda, E.H., Graña Drummond, L.M.: On the convergence of the projected gradient method for vector optimization. Optimization 60, 1009–1021 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fukuda, E.H., Graña Drummond, L.M.: A survey on multiobjective descent methods. Pesqui. Oper. 34, 585–620 (2014)

    Article  Google Scholar 

  26. Graña Drummond, L.M., Iusem, A.N.: A projected gradient method for vector optimization problems. Comput. Optim. Appl. 28, 5–29 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Graña Drummond, L.M., Svaiter, B.F.: A steepest descent method for vector optimization. J. Comput. Appl. Math. 175, 395–414 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Guo, X.L., Li, S.J.: Optimality conditions for vector optimization problems with difference of convex maps. J. Optim. Theory Appl. 162, 821–844 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hartman, P.: On functions representable as a difference of convex functions. Pac. J. Math. 9, 707–713 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hiriart-Urruty, J.B.: Generalized differentiabity, duality and optimization for problems dealing with difference of convex functions. Convex. Dual. Optim. Lect. Notes Econ. Math. Syst. 256, 37–70 (1986)

    Article  Google Scholar 

  31. Holmberg, K., Tuy, H.: A production–transportation problem with stochastic demand and concave production costs. Math. Program. 85, 157–179 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Huang, X.X., Yang, X.Q.: Duality for multiobjective optimization via nonlinear Lagrangian functions. J. Optim. Theory Appl. 120, 111–127 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jahn, J.: Vector Optimization: Theory, Applications and Extensions. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  34. Ji, Y., Goh, M., De Souza, R.: Proximal point algorithms for multi-criteria optimization with the difference of convex objective functions. J. Optim. Theory Appl. 169, 280–289 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lewin, K.: Frontiers in group dynamics: concept, method and reality in social science; social equilibria and social change. Hum. Relat. 1, 5–41 (1947)

    Article  Google Scholar 

  36. Lewin, K.: Field Theory in Social Science. Harper Torchbooks. Harper and Row, New York (1964)

    Google Scholar 

  37. Luc, D.T., Tan, N.X., Tinh, P.N.: Convex vector functions and their subdifferential. Acta Math. Vietnam 23, 107–127 (1998)

    MathSciNet  MATH  Google Scholar 

  38. Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems. Springer, New York (1989)

    Google Scholar 

  39. Mai, T.T., Luu, D.V.: Optimality conditions for weakly efficient solutions of vector variational inequalities via convexificators. J. Nonlinear Var. Anal. 2, 379–389 (2018)

    MATH  Google Scholar 

  40. Martinet, B.: Regularisation d’inéquations variationelles par approximations succesives. Rev. Francaise d’Inform. Recherche Oper. 4, 154–159 (1970)

    MATH  Google Scholar 

  41. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer, Norwell (1999)

    MATH  Google Scholar 

  42. Minami, M.: Weak Pareto-optimal necessary conditions in a nondifferentiable multiobjective program on a Banach space. J. Optim. Theory Appl. 41, 451–461 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  43. Moreau, J.J.: Proximité et dualité dans un espace Hilbertien. Bull. Soc. Math. Fr. 93, 273–299 (1965)

    Article  MATH  Google Scholar 

  44. Moreno, F.G., Oliveira, P.R., Soubeyran, A.: A proximal point algorithm with quasi distance. Application to habit’s formation. Optimization 61, 1383–1403 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Maingé, P.-E., Moudafi, A.: Convergence of new inertial proximal methods for DC programming. SIAM J. Optim. 19, 397–413 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I. Basic Theory, Grundlehren der Mathematischen Wissenschaften, vol. 330. Springer, Berlin (2006)

    Book  Google Scholar 

  47. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. II. Applications, Grundlehren der Mathematischen Wissenschaften, vol. 331. Springer, Berlin (2006)

    Book  Google Scholar 

  48. Mordukhovich, B.S.: Variational Analysis and Applications. Springer, New York (2018)

    Book  MATH  Google Scholar 

  49. Muu, L.D., Quoc, T.D.: One step from DC optimization to DC mixed variational inequalities. Optimization 59, 63–76 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Poole, M.S., Van de Ven, A.H.: Handbook of Organizational Change and Innovation. Oxford University Press, New York (2004)

    Google Scholar 

  51. Qu, S., Liu, C., Goh, M., Li, Y., Ji, Y.: Nonsmooth multiobjective programming with quasi-Newton methods. Eur. J. Oper. Res. 235, 503–510 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Qu, S., Goh, M., Ji, Y., De Souza, R.: A new algorithm for linearly constrained c-convex vector optimization with a supply chain network risk application. Eur. J. Oper. Res. 247, 359–365 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  54. Ross, G.T., Soland, R.M.: A multicriteria approach to the location of public facilities. Eur. J. Oper. Res. 4, 307–321 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  55. Soubeyran, A.: Variational Rationality, a Theory of Individual Stability and Change: Worthwhile and Ambidextry Behaviors. GREQAM, Aix Marseillle University, France (2009); (preprint)

  56. Soubeyran, A.: Variational Rationality and the “unsatisfied man”: Routines and the Course Pursuit Between Aspirations, Capabilities and Beliefs. GREQAM, Aix Marseillle University, France (2010); (preprint)

  57. Soubeyran, A.: Variational Rationality. A Theory of Worthwhile Stay and Change Approach-avoidance Transitions Ending in Traps. GREQAM-AMSE, Aix Marseille University, France (2016); (preprint)

  58. Soubeyran, A.: Variational Rationality. 1. An Adaptive Theory of the Unsatisfied Man. GREQAM-AMSE, Aix Marseille University, France (2019); (preprint)

  59. Soubeyran, A.: Variational Rationality. 2. A General Theory of Goals and Intentions as Satisficing Worthwhile Moves. GREQAM-AMSE, Aix Marseille University, France (2019); (preprint)

  60. Souza, J.C.O., Oliveira, P.R.: A proximal point algorithm for DC functions on Hadamard manifolds. J. Glob. Optim. 63, 797–810 (2015)

    Article  MATH  Google Scholar 

  61. Sun, W., Sampaio, R.J.B., Candido, M.A.B.: Proximal point algorithm for minimization of DC Functions. J. Comput. Math. 21, 451–462 (2003)

    MathSciNet  MATH  Google Scholar 

  62. Tao, P.D., Souad, E.B.: Algorithms for Solving a Class of Nonconvex Optimization Problems: Methods of Subgradient. Fermat Days 85: Mathematics for Optimization, pp. 249–270 (1986)

  63. Tao, P.D., An, L.T.H.: A DC optimization algorithm for solving the trust region subproblem. SIAM J. Optim. 8, 476–505 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  64. Thibault, L.: Subdifferentials of nonconvex vector-valued functions. J. Math. Anal. Appl. 86, 319–344 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  65. Tuy, H., Horst, R.: Convergence and restart in branch-and-bound algorithms for global optimization. Application to concave minimization and dc optimization problems. Math. Program. 41, 161–183 (1988)

    Article  MATH  Google Scholar 

  66. Villacorta, K.D.V., Oliveira, P.R.: An interior proximal method in vector optimization. Eur. J. Oper. Res. 214, 485–492 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  67. Wen, B., Chen, X., Pong, T.K.: A proximal difference-of-convex algorithm with extrapolation. Comput. Optim. Appl. 69, 297–324 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Funding was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant Nos. 203360/2014–1, 305462/2014–8, 423737/2016-3, 310864/2017-8, 424169/2018-5) and Fundação de Amparo à Pesquisa do Estado de Goiás (PRONEN Grant No. 201710267000532). The authors wish to express their gratitude to the anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Carlos de Oliveira Souza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho Bento, G., Bitar, S.D.B., da Cruz Neto, J.X. et al. A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems. Comput Optim Appl 75, 263–290 (2020). https://doi.org/10.1007/s10589-019-00139-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-019-00139-0

Keywords

Navigation