Skip to main content

Advertisement

Log in

Optimal stochastic extragradient schemes for pseudomonotone stochastic variational inequality problems and their variants

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider the stochastic variational inequality problem in which the map is expectation-valued in a component-wise sense. Much of the available convergence theory and rate statements for stochastic approximation schemes are limited to monotone maps. However, non-monotone stochastic variational inequality problems are not uncommon and are seen to arise from product pricing, fractional optimization problems, and subclasses of economic equilibrium problems. Motivated by the need to address a broader class of maps, we make the following contributions: (1) we present an extragradient-based stochastic approximation scheme and prove that the iterates converge to a solution of the original problem under either pseudomonotonicity requirements or a suitably defined acute angle condition. Such statements are shown to be generalizable to the stochastic mirror-prox framework; (2) under strong pseudomonotonicity, we show that the mean-squared error in the solution iterates produced by the extragradient SA scheme converges at the optimal rate of \({{\mathcal {O}}}\left( \frac{1}{{K}}\right) \), statements that were hitherto unavailable in this regime. Notably, we optimize the initial steplength by obtaining an \(\epsilon \)-infimum of a discontinuous nonconvex function. Similar statements are derived for mirror-prox generalizations and can accommodate monotone SVIs under a weak-sharpness requirement. Finally, both the asymptotics and the empirical rates of the schemes are studied on a set of variational problems where it is seen that the theoretically specified initial steplength leads to significant performance benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that this paper references our conference paper and a preprint of the current paper.

  2. We prefer not to qualify the initial steplength as “optimal” since the error bound in general is a function of \(\gamma _0\) and \(\beta \).

References

  1. Facchinei, F., Pang, J.-S.: Finite Dimensional Variational Inequalities and Complementarity Problems, vol. 1, 2. Springer, New York (2003)

    MATH  Google Scholar 

  2. Konnov, I.V.: Equilibrium Models and Variational Inequalities. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  3. Brighi, L., John, R.: Characterizations of pseudomonotone maps and economic equilibrium. J. Stat. Manag. Syst. 5(1–3), 253–273 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Kihlstrom, R., Mas-Colell, A., Sonnenschein, H.: The demand theory of the weak axiom of revealed preference. Econometrica 44(5), 971–978 (1976)

    MathSciNet  MATH  Google Scholar 

  5. Elizarov, A.M.: Maximizing the lift-drag ratio of wing airfoils with a turbulent boundary layer: exact solutions and approximations. Dokl. Phys. 53(4), 221–227 (2008)

    MATH  Google Scholar 

  6. Rousseau, A., Sharer, P., Pagerit, S., Das, S.: Trade-off between fuel economy and cost for advanced vehicle configurations. In: Proceedings of the 20th International Electric Vehicle Symposium, Monaco (2005)

  7. Duensing, G.R., Brooker, H.R., Fitzsimmons, J.R.: Maximizing signal-to-noise ratio in the presence of coil coupling. J. Magn. Reson. Ser. B 111(3), 230–235 (1996)

    Google Scholar 

  8. Shadwick, W., Keating, C.: A universal performance measure. J. Perform. Meas. 6(3), 59–84 (2002)

    Google Scholar 

  9. Hossein, K., Thomas, S., Raj, G.: Omega as a Performance Measure. Preliminary Report, Duke University (2003)

  10. Chandra, S.: Strong pseudo-convex programming. Indian J. Pure Appl. Math. 3(2), 278–282 (1972)

    MathSciNet  MATH  Google Scholar 

  11. Hobbs, B.F.: Mill pricing versus spatial price discrimination under Bertrand and Cournot spatial competition. J. Ind. Econ. 35(2), 173–191 (1986)

    Google Scholar 

  12. Choi, S.C., Desarbo, W.S., Harker, P.T.: Product positioning under price competition. Manag. Sci. 36(2), 175–199 (1990)

    MATH  Google Scholar 

  13. Garrow, L.A., Koppelman, F.S.: Multinomial and nested logit models of airline passengers’ no-show and standby behaviour. J. Revenue Pricing Manag. 3(3), 237–253 (2004)

    Google Scholar 

  14. Newman, J.P.: Normalization of network generalized extreme value models. Transp. Res. Part B Methodol. 42(10), 958–969 (2008)

    Google Scholar 

  15. Cliquet, G.: Implementing a subjective MCI model: an application to the furniture market. Eur. J. Oper. Res. 84(2), 279–291 (1995)

    MATH  Google Scholar 

  16. Nakanishi, M., Cooper, L.G.: Parameter estimation for a multiplicative competitive interaction model: least squares approach. J. Market. Res. 11(3), 303–311 (1974)

    Google Scholar 

  17. Gallego, G., Hu, M.: Dynamic pricing of perishable assets under competition. Manag. Sci. 60(5), 1241–1259 (2014)

    Google Scholar 

  18. Ewerhart, C.: Cournot games with biconcave demand. Games Econ. Behav. 85, 37–47 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on Stochastic Programming: Modeling and Theory. The Society for Industrial and Applied Mathematics and the Mathematical Programming Society, Philadelphia (2009)

    MATH  Google Scholar 

  20. Xu, H.: Sample average approximation methods for a class of stochastic variational inequality problems. Asia-Pac. J. Oper. Res. 27(1), 103–119 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Lu, S., Budhiraja, A.: Confidence regions for stochastic variational inequalities. Math. Oper. Res. 38(3), 545–568 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Lu, S.: Symmetric confidence regions and confidence intervals for normal map formulations of stochastic variational inequalities. SIAM J. Optim. 24(3), 1458–1484 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)

    MathSciNet  MATH  Google Scholar 

  24. Kushner, H.J., Yin, G.G.: Stochastic Approximation and Recursive Algorithms and Applications. Springer, New York (2003)

    MATH  Google Scholar 

  25. Borkar, V.S.: Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  26. Spall, J.C.: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. Wiley Series in Discrete Mathematics and Optimization. Wiley, New York (2005)

    MATH  Google Scholar 

  27. Nemirovski, A.S., Judin, D.B.: On Cezari’s convergence of the steepest descent method for approximating saddle point of convex–concave functions. In: Soviet Mathematics-Doklady, vol. 19 (1978)

  28. Ruppert, D.: Efficient Estimations from a Slowly Convergent Robbins–Monro Process. Cornell University Technical Report, Operations Research and Industrial Engineering (1988)

  29. Polyak, B.T.: New stochastic approximation type procedures. Autom. Telem. 7, 98–107 (1990)

    Google Scholar 

  30. Polyak, B.T., Juditsky, A.: Acceleration of stochastic approximation by averaging. SIAM J. Control Optim. 30(4), 838–855 (1992)

    MathSciNet  MATH  Google Scholar 

  31. Kushner, H.J., Yang, J.: Stochastic approximation with averaging of the iterates: optimal asymptotic rate of convergence for general processes. SIAM J. Control Optim. 31(4), 1045–1062 (1993)

    MathSciNet  MATH  Google Scholar 

  32. Kushner, H.J., Yang, J.: Analysis of adaptive step-size SA algorithms for parameter tracking. IEEE Trans. Autom. Control 40(8), 1403–1410 (1995)

    MathSciNet  MATH  Google Scholar 

  33. Nemirovski, A.S., Yudin, D.B.: Problem Complexity and Method Efficiency in Optimization. Wiley-Interscience, New York, Translated by E. R. Dawson (1983)

  34. Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19(4), 1574–1609 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Ghadimi, S., Lan, G.: Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, I: a generic algorithmic framework. SIAM J. Optim. 22(4), 1469–1492 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Ghadimi, S., Lan, G.: Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, II: shrinking procedures and optimal algorithms. SIAM J. Optim. 23(4), 2061–2089 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Bertsekas, D., Tsitsiklis, J.: Gradient convergence in gradient methods with errors. SIAM J. Optim. 10(3), 627–642 (2000)

    MathSciNet  MATH  Google Scholar 

  38. Ghadimi, S., Lan, G.: Stochastic first- and zeroth-order methods for nonconvex stochastic programming. SIAM J. Optim. 23(4), 2341–2368 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Jiang, H., Xu, H.: Stochastic approximation approaches to the stochastic variational inequality problem. IEEE Trans. Autom. Control 53(6), 1462–1475 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Koshal, J., Nedić, A., Shanbhag, U.V.: Regularized iterative stochastic approximation methods for stochastic variational inequality problems. IEEE Trans. Autom. Control 58(3), 594–609 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Yousefian, F., Nedić, A., Shanbhag, U.V.: A regularized smoothing stochastic approximation (RSSA) algorithm for stochastic variational inequality problems. In: Proceedings of the Winter Simulation Conference (WSC), pp. 933–944 (2013)

  42. Juditsky, A., Nemirovski, A., Tauvel, C.: Solving variational inequalities with stochastic mirror-prox algorithm. Stoch. Syst. 1(1), 17–58 (2011)

    MathSciNet  MATH  Google Scholar 

  43. Yousefian, F., Nedić, A., Shanbhag, U.V.: Optimal robust smoothing extragradient algorithms for stochastic variational inequality problems. In 53rd IEEE Conference on Decision and Control, pp. 5831–5836 (2014)

  44. Chen, Y., Lan, G., Ouyang, Y.: Accelerated schemes for a class of variational inequalities. Math. Program. 165(1), 113–149 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Kannan, A., Shanbhag, U.V.: The pseudomonotone stochastic variational inequality problem: analytical statements and stochastic extragradient schemes. In: American Control Conference, ACC 2014, Portland, OR, USA, June 4–6, 2014, pp. 2930–2935. IEEE (2014)

  46. Iusem, A.N., Jofré, A., Oliveira, R.I., Thompson, P.: Extragradient method with variance reduction for stochastic variational inequalities. SIAM J. Optim. 27(2), 686–724 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Yousefian, F., Nedić, A., Shanbhag, U.V.: On stochastic mirror-prox algorithms for stochastic Cartesian variational inequalities: randomized block coordinate and optimal averaging schemes. Set-Valued Var. Anal. 26(4), 789–819 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Yousefian, F., Nedić, A., Shanbhag, U.V.: Self-tuned stochastic approximation schemes for non-Lipschitzian stochastic multi-user optimization and Nash games. IEEE Trans. Autom. Control 61(7), 1753–1766 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Iusem, A.N., Jofré, A., Thompson, P.: Incremental constraint projection methods for monotone stochastic variational inequalities. Math. Oper. Res. (2018). https://doi.org/10.1287/moor.2017.0922

    Article  Google Scholar 

  50. Yousefian, F., Nedić, A., Shanbhag, U.V.: On smoothing, regularization, and averaging in stochastic approximation methods for stochastic variational inequality problems. Math. Program. 165(1), 391–431 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Polyak, B.T.: Introduction to Optimization. Optimization Software Inc., New York (1987)

    MATH  Google Scholar 

  52. Nemirovski, A.: Prox-method with rate of convergence \({O}(1/{T})\) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Optim. 15(1), 229–251 (2005)

    MathSciNet  MATH  Google Scholar 

  53. Dang, C.D., Lan, G.: On the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operators. Comput. Optim. Appl. 60(2), 277–310 (2015)

    MathSciNet  MATH  Google Scholar 

  54. Dvurechensky, P., Gasnikov, A., Stonyakin, F., Titov, A.: Generalized Mirror Prox: Solving Variational Inequalities with Monotone Operator, Inexact Oracle, and Unknown Hölder Parameters. arxiv:1806.05140.pdf (2018)

  55. Nesterov, Y.: Introductory lectures on convex optimization: a basic course. In: Pardalos, P., Hearn, D. (eds.) Applied Optimization. Kluwer, Dordrecht (2004)

    MATH  Google Scholar 

  56. Watson, L.T.: Solving the nonlinear complementarity problem by a homotopy method. SIAM J. Control Optim. 17(1), 36–46 (1979)

    MathSciNet  MATH  Google Scholar 

  57. Kannan, A., Shanbhag, U.V.: Distributed computation of equilibria in monotone Nash games via iterative regularization techniques. SIAM J. Optim. 22(4), 1177–1205 (2012)

    MathSciNet  MATH  Google Scholar 

  58. Allaz, B., Vila, J.L.: Cournot competition, forward markets and efficiency. J. Econ. Theory 59(1), 1–16 (1993)

    MATH  Google Scholar 

  59. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. 4OR 5(3), 173–210 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Farzad Yousefian for his valuable suggestions on a previous version. We particularly appreciate the comments of the referees and the editor, all of which have led to significant improvements in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday V. Shanbhag.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research has been partially supported by NSF Awards 1246887 (CAREER), 1538193 and 1408366.

Appendix

Appendix

Lemma 7

Consider the function \(t_0(\gamma _0)\) defined as

$$\begin{aligned} t_0(\gamma _0) \triangleq \frac{\gamma _0^2}{2\sigma \gamma _0 - \lfloor 2\sigma \gamma _0 \rfloor }, \end{aligned}$$

where \(\sigma _0\) denotes the strong pseudomonotonicity constant. Then the following hold:

  1. (a)

    A minimizer of \(t_0(\gamma _0)\) cannot exist in an interval \(\lfloor 2\sigma \gamma _0 \rfloor \in [n,n+1]\) where \(n > 1\).

  2. (b)

    The infimum of \(t_0(\gamma _0)\) is given by the following : 

    $$\begin{aligned} {{ f^* \triangleq }} \inf _{\gamma _0} \left\{ t_0(\gamma _0) \mid 1< \ 2\sigma \gamma _0 \ < 2 \right\} = \frac{1}{\sigma ^2}. \end{aligned}$$
  3. (c)

    Suppose an \(\epsilon \)-infimum of \(t_0(\gamma _0)\), denoted by \(f^*_{\epsilon }\), satisfies \(f^*_{\epsilon } \le f^* + \beta \epsilon \) for some \(\beta > 0\). Then \(f^*_{\epsilon }\) is achieved by \(\gamma _0 = \frac{2-\epsilon }{2\sigma }\) and satisfies \({{f_{\epsilon }^*}} \le f^* + \frac{2\epsilon }{\sigma ^2}\), where \(\epsilon \in (0,1/2)\).

Proof

  1. (a)

    We begin by observing that if \(2\sigma \gamma _0 \in \mathbb {Z}_+\), then \(t_0(\gamma _0) = +\infty .\) Consequently, any minimizer of \(t_0(\gamma _0)\) has to satisfy \(2\gamma _0 \sigma \not \in \mathbb {Z}_+\). We proceed to show that \(t_0(\gamma _0)\) does not admit a minimizer in \((n,n+1)\) where \(n > 1\). Assume this is false and suppose there exists a minimizer \(\gamma _0^*\) satisfying \(2\gamma _0^*\sigma \in (n,n+1)\). But there exists a \(\tilde{\gamma }_0\) such that \(2\sigma {\tilde{\gamma }}_0 \in (n-1,n)\). In fact, \(t_0({{\tilde{\gamma }}}_0) < t_0(\gamma _0^*)\) as we show next and our claim follows.

    $$\begin{aligned} t_0({\tilde{\gamma }}_0) = \left( \frac{{\tilde{\gamma }}_0^2}{2\sigma {\tilde{\gamma }}_0 - \lfloor 2 \sigma {\tilde{\gamma }}_0 \rfloor } \right) < \left( \frac{(\gamma ^*_0)^2}{2\sigma \gamma ^*_0 - \lfloor 2 \sigma \gamma ^*_0 \rfloor } \right) = t_0(\gamma _0^*). \end{aligned}$$
  2. (b)

    From (a), it follows that if a minimizer exists, it has to satisfy \(2\gamma _0^* \sigma \in (1,2)\). It follows that \(t_0(\gamma _0)\) reduces to \(\gamma _0^2/(2\sigma \gamma _0 - 1).\) Consider the following optimization problem:

    $$\begin{aligned} \inf _{ \gamma _0} \left\{ \frac{\gamma _0^2}{(2\sigma \gamma _0 - 1)} \mid 1< 2\sigma \gamma _0 < 2 \right\} . \end{aligned}$$

    We observe that \(t_0(\gamma _0)\) is a strictly decreasing function by noting that

    $$\begin{aligned} t'_0(\gamma _0)= & {} \frac{2\gamma _0}{2\sigma \gamma _0-1} -\frac{ 2\sigma \gamma _0^2 }{(2\sigma \gamma _0 -1)^2} = \frac{2\gamma _0}{2\sigma \gamma _0-1} \left( 1-\frac{\sigma \gamma _0}{2\sigma \gamma _0-1} \right) \\= & {} \frac{2\gamma _0}{2\sigma \gamma _0-1} \left( \frac{\sigma \gamma _0-1}{2\sigma \gamma _0-1} \right) < 0, \end{aligned}$$

    since \(\sigma \gamma _0 < 1\). It follows that the infimum is at the end-point given by \(\sigma \gamma _0 = 1\) implying that

    $$\begin{aligned} \inf _{ \gamma _0} \left\{ \frac{\gamma _0^2}{(2\sigma \gamma _0 - 1)} \mid 1< 2\sigma \gamma _0 < 2 \right\} = \frac{1}{\sigma ^2}. \end{aligned}$$
  3. (c)

    Suppose \({\widehat{\gamma }}_0 = \frac{2-\epsilon }{2\sigma }\) where \(\epsilon \in (0,1/2)\). Then we have that

    $$\begin{aligned} f^*_{\epsilon } - f^* = \frac{(2-\epsilon )^2}{4\sigma ^2 (1-\epsilon )} - \frac{1}{\sigma ^2} \le \frac{1}{\sigma ^2} \left( \frac{1}{1-\epsilon } - 1\right) = \frac{1}{\sigma ^2}\frac{\epsilon }{1-\epsilon } = \frac{2}{\sigma ^2} \epsilon . \end{aligned}$$

    It follows that \({{f^*_{\epsilon } \le f^* + \frac{2\epsilon }{\sigma ^2}}}.\)\(\square \)

Example 1

Unfortunately, while one can derive an infimum of the above discontinuous optimization problem, this infimum cannot be achieved and the problem lacks a minimizer as proved in the above result. Yet, this infimum is informative in developing an approximate \(\epsilon \)-solution as part (c) shows. We proceed to use this \(\epsilon \)-infimum in deriving rate statements and demonstrate this result through an example. Suppose \(\sigma = 0.1\sqrt{1.3}\). Then \(t_0(\gamma _0)\) is shown as a solid line with discontinuities in Fig. 1 while the dashed flat line displays the infimum \(1/\sigma ^2\).

Fig. 1
figure 1

A schematic of \(t_0(\gamma _0)\)

Lemma 8

Consider the following recursion: \( a_{k+1} \le (1-2c\theta /k) a_k + {\textstyle {1\over 2}}\theta ^2 M^2/k^2, \) where \(\theta \) and M are positive constants, \(a_k \ge 0\), and \((1-2c\theta ) < 0\). Then for \(k \ge 1\), we have that

$$\begin{aligned} 2a_k \le \frac{\max \left( \frac{\theta ^2}{2c\theta - \lfloor 2c\theta \rfloor } M^2,2a_1\right) }{k}. \end{aligned}$$

Proof

We begin by noting that \({\bar{\epsilon }} > 0\) and \(\kappa >1\) as seen next.

$$\begin{aligned} \kappa = \left( 1+\frac{\bar{k}-1}{2c\theta -\bar{k}}\right) = \left( \frac{2c\theta -1}{2c\theta -\lfloor 2c\theta \rfloor }\right) > 1. \end{aligned}$$

We consider the following cases for k.

  • Case 1: Consider \(k = 1\). Then the following holds: \(a_{2} \le (1-2c\theta )a_1 + \frac{1}{2}\theta ^2 M^2.\) If \((2c\theta -1) > 0\), we may rearrange the inequalities as follows:

    $$\begin{aligned} (2c\theta -1)a_1&\le -a_2 + \frac{1}{2} \theta ^2M^2 \le \frac{1}{2} \theta ^2M^2 \; \text {or} \; 2a_1 \le \frac{1}{2c\theta -1} \theta ^2M^2 \\ \Longrightarrow 2a_1&\le \max \left( (2c\theta -1)^{-1}\theta ^2M^2, 2a_1\right) \\&\le \max \left( (2c\theta -1)^{-1}\theta ^2M^2\kappa ,2a_1 \right) , \end{aligned}$$

    where \(\kappa > 1\).

  • Case 2: \(1 \ < \ k \le \bar{k}\). Recall that when \(k \le \bar{k}\), we have that

    $$\begin{aligned} (1-2c\theta /k) \le (1-2c\theta /\bar{k}) = \left( 1-(2c\theta ) /(\lceil 2c\theta \rceil )\right) < 0. \end{aligned}$$

    Then the following holds:

    $$\begin{aligned} a_{k+1}&\le \left( \left( 1-\frac{2c\theta }{k}\right) a_{k} + \frac{1}{2}\frac{\theta ^2 M^2}{k^2} \right) \\ a_k \left( \frac{2c\theta }{k}-1\right)&\le -a_{k+1} + \frac{\theta ^2M^2}{2k^2} \le \frac{\theta ^2 M^2}{2k^2}\\ \Longrightarrow a_k&\le \frac{\theta ^2M^2}{2k^2}\left( \frac{k}{2c\theta -k}\right) = \frac{\theta ^2M^2}{2k(2c\theta -k)}. \end{aligned}$$

    By the definition of \(\kappa \) and \(u \triangleq \max \left( \frac{\kappa \theta ^2 M^2}{(2c\theta -1)}, {2a_1}\right) \), we may conclude the following:

    $$\begin{aligned} 2a_{k} \le \frac{\theta ^2M^2}{k(2c\theta -k)}&= \frac{\theta ^2M^2}{k(2c\theta -1)}\left( \frac{2c\theta -1}{2c\theta -k}\right) \\&\le \frac{\theta ^2M^2}{k(2c\theta -1)}\left( \frac{2c\theta -k+\bar{k}-1}{2c\theta -k}\right) \\&\le \frac{\theta ^2M^2}{k(2c\theta -1)} \left( 1+\frac{\bar{k}-1}{2c\theta -k}\right) \\&\le \frac{\theta ^2M^2}{k(2c\theta -1)} \left( 1+\frac{\bar{k}-1}{2c\theta -{\bar{k}} }\right) = \frac{\theta ^2M^2}{k(2c\theta -1)} \kappa \\&\le {1\over k}\max \left( \frac{\kappa \theta ^2 M^2}{(2c\theta -1)}, {2a_1}\right) = \frac{u}{k}, \end{aligned}$$
  • Case 3: \(k > \bar{k}\). Suppose, this holds for \(k > \bar{k}\), implying that \(2a_k \le \frac{\max (\theta ^2M^2(2c\theta -1)^{-1}\kappa , 2a_1)}{k}\). We proceed to show that this holds for \(k: = k+1\) where \(u \triangleq \max \left( \theta ^2M^2 (2c\theta -1)^{-1}\kappa , 2a_1 \right) \) and \((1-\frac{2c\theta }{k}) > 0\) since \(k > \bar{k}\):

    $$\begin{aligned} a_{k+1}&\le \left( 1-\frac{2c\theta }{k}\right) \frac{u}{2k} + \frac{1}{2}\left( \frac{\theta ^2M^2}{k^2}\right) \\&= \left( 1-\frac{2c\theta }{k}\right) \frac{u}{2k} + \frac{(2c\theta -1)}{2k} \left( \frac{\theta ^2M^2}{(2c\theta -1)k}\right) \\&\le \left( 1-\frac{2c\theta }{k}\right) \frac{u}{2k} + \frac{(2c\theta -1)}{2k} \left( \frac{\theta ^2M^2\kappa }{(2c\theta -1)k}\right) \\&\le \left( \frac{u}{2k}-\left( \frac{2c\theta }{k}\right) \frac{u}{2k}\right) + \left( \frac{2c\theta -1}{2k}\right) \frac{u}{k} \\&= \frac{u}{2k}-\frac{1}{k}\left( \frac{u}{2k}\right) \le \frac{u}{2k} -\frac{1}{k+1}\left( \frac{u}{2k}\right) = \frac{u}{2(k+1)}. \end{aligned}$$

\(\square \)

Lemma 9

Consider the following problem: \(\min \left\{ h(\gamma _0) g(z) \mid \gamma _0 \in \Gamma _0, z \in {{\mathcal {Z}}}\right\} ,\) where h and g are positive functions over \(\Gamma _0\) and \({\mathcal {Z}}\), respectively. If \({\bar{\gamma }}_0\) and \({\bar{z}}\) denote global minimizers of \(h(\gamma _0)\) and g(z) over \(\Gamma _0\) and \({{\mathcal {Z}}}\), respectively, then the following holds:

$$\begin{aligned} {{\min _{\gamma _0 \in \Gamma _0, z \in {\mathcal {Z}}} h(\gamma _0) g(z) = h({\bar{\gamma }}_0) g({\bar{z}}).}} \end{aligned}$$

Proof

The proof has two steps. First, we note that \( \min _{\gamma _0 \in \Gamma _0, z \in {\mathcal {Z}}} h(\gamma _0) g(z) \ge h({\bar{\gamma }}_0) g({\bar{z}}), \) implying that at any global minimizer \((\gamma _0^*,z^*)\),

$$\begin{aligned} h(\gamma _0^*)g(z^*) \ge h({\bar{\gamma }}_0) g({\bar{z}}). \end{aligned}$$
(35)

Second, since \(({\bar{\gamma }}_0, {\bar{z}}) \in \Gamma _0 \times {\mathcal {Z}}\), we have that \(h(\gamma _0^*)g(z^*)\) has an optimal value that is no smaller than that the value associated with any feasible solution or

$$\begin{aligned} h(\gamma _0^*) g(z^*) = \min _{\gamma _0 \in \Gamma _0, z \in {\mathcal {Z}}} h(\gamma _0) g(z) \le h({\bar{\gamma }}_0) g({\bar{z}}). \end{aligned}$$
(36)

By combining (35) and (36), the result follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, A., Shanbhag, U.V. Optimal stochastic extragradient schemes for pseudomonotone stochastic variational inequality problems and their variants. Comput Optim Appl 74, 779–820 (2019). https://doi.org/10.1007/s10589-019-00120-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-019-00120-x

Keywords

Navigation