Skip to main content
Log in

Symmetric error estimates for discontinuous Galerkin time-stepping schemes for optimal control problems constrained to evolutionary Stokes equations

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider fully discrete finite element approximations of a distributed optimal control problem, constrained by the evolutionary Stokes equations. Conforming finite element methods for spatial discretization combined with discontinuous time-stepping Galerkin schemes are being used for the space-time discretization. Error estimates are proved under weak regularity hypotheses for the state, adjoint and control variables. The estimates are also applicable when high order schemes are being used. Computational examples validating our expected rates of convergence are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abergel, F., Temam, R.: On some control problems in fluid mechanics. Theor. Comput. Fluid Dyn. 1, 303–326 (1990)

    Article  MATH  Google Scholar 

  2. Apel, T., Flaig, T.: Crank-Nicolson schemes for optimal control problems with evolution equations. SIAM J. Numer. Anal. 50, 1484–1512 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Casas, E.: An optimal control problem governed by the evolution Navier–Stokes equations. In: Sritharan, S.S. (ed.) Optimal Control of Viscous Flows. Frontiers in Applied Mathematics. SIAM, Philadelphia (1998)

    Google Scholar 

  4. Casas, E., Chrysafinos, K.: A discontinuous Galerkin time stepping scheme for the velocity tracking problem. SIAM. J. Numer. Anal. 50, 2281–2306 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Casas, E., Chrysafinos, K.: Error estimates for the discretization of the velocity tracking problem. http://www.math.ntua.gr/~chrysafinos. Accessed 1 Sept 2014

  6. Chrysafinos, K.: Discontinuous Galerkin finite element approximations for distributed optimal control problems constrained to parabolic PDE’s. Int. J. Numer. Anal. Model. 4, 690–712 (2007)

    MATH  MathSciNet  Google Scholar 

  7. Chrysafinos, K.: Analysis and finite element approximations for distributed optimal control problems for implicit parabolic equations. J. Comput. Appl. Math. 231, 327–348 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chrysafinos, K., Karatzas, E.: Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDEs. Discret. Contin. Dynam. Syst. B 17, 1473–1506 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chrysafinos, K., karatzas, E.: Error estimates for discontinuous Galerkin time-stepping schemes for Robin boundary control problems constrained to parabolic pdes’, http://www.math.ntua.gr/~chrysafinos. Accessed 1 Sept 2014

  10. Chrysafinos, K., Walkington, N.J.: Discontinuous Galerkin approximations of the Stokes and Navier–Stokes equations. Math. Comput. 79, 2135–2167 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ciarlet, P.: The Finite Element Method for Elliptic Problems. SIAM Classics, Philadelphia (2002)

    Book  Google Scholar 

  12. Constantin, P.: Navier–Stokes equations. The University of Chicago press, Chicago (1988)

    MATH  Google Scholar 

  13. Dautray, R., Lions, J.-L.: Mathematical analysis and Numerical Methods for Science and Technology, vol. 6. Spinger-Verlag, Berlin (1993)

    Google Scholar 

  14. Deckelnick, K., Hinze, M.: Error estimates in space and time for tracking type control of the instationary Stokes system. Int. Ser. Numer. Math. 143, 87–103 (2002)

    Google Scholar 

  15. Deckelnick, K., Hinze, M.: Semidiscretization and error estimates for distributed control of the instationary Navier–Stokes equations. Numer. Math. 97, 297–320 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. de los Reyes, J.-C., Kunisch, K.: A semi-smooth Newton method for control constrained boundary control of the Navie–Stokes equtions. Nonlinear Anal. 62, 1289–1316 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Evans, L.: Partial Differential Equations. AMS, Providence (1998)

    Book  MATH  Google Scholar 

  18. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes. Springer-Verlag, New York (1986)

    Book  MATH  Google Scholar 

  19. Gunzburger, M.D.: Perspectives in flow control and optimization. Advances in Design and Control. SIAM, Philadelphia (2003)

    Google Scholar 

  20. Gunzburger, M.D., Manservisi, S.: Analysis and approximation of the velocity tracking problem for Navier–Stokes flows with distributed control. SIAM J. Numer. Anal. 37, 1481–1512 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gunzburger, M.D., Manservisi, S.: The velocity tracking problem for Navier–Stokes flows with bounded distributed control. SIAM J. Control Optim. 37, 1913–1945 (2000)

    Article  MathSciNet  Google Scholar 

  22. Gunzburger, M.D., Manservisi, S.: The velocity tracking problem for Navier–Stokes flow with boundary control. SIAM J. Control Optim. 39, 594–634 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hecht, F.: FreeFem++, 3rd edn, Version 3.13, 2011. http://www.freefem.org/ff++. Accessed 1 Aug 2014

  24. Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second order estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30, 45–61 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hinze, M., Kunisch, K.: Second order methods for optimal control of time-dependent fluid flow. SIAM J. Control Optim. 40, 925–946 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hinze, M., Kunisch, K.: Second order methods for boundary control of the instationary Navier–Stokes system. ZAMMZ. Angew. Math. Mech. 84, 171–187 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hou, L.S.: Error estimates for semidiscrete finite element approximation of the evolutionary Stokes equations under minimal regularity assumptions. J. Sci. Comput. 16, 287–317 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kunisch, K., Vexler, B.: Constrained Dirichlet boundary control in \(L^2\) for a class of evolution equations. SIAM J. Control Optim. 46(5), 1726–1753 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  31. Lions, J.-L.: Some Aspects of the Control of Distributed Parameter Systems. SIAM Publications, Philadelphia (1972)

    Book  MATH  Google Scholar 

  32. Liu, W.-B., Ma, H.-P., Tang, T., Yan, N.: A posteriori error estimates for DG time-stepping method for optimal control problems governed by parabolic equations. SIAM J. Numer. Anal. 42(3), 1032–1061 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Meidner, D., Vexler, B.: Adaptive space-time finite element methods for parabolic optimization problems. SIAM J. Control Optim. 46, 116–142 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I: problems without control constraints. SIAM J. Control Optim. 47, 1150–1177 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part II: problems with control constraints. SIAM J. Control Optim. 47, 1301–1329 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Neittaanmaki, P., Tiba, D.: Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications. M. Dekker, New York (1994)

    Google Scholar 

  37. Neitzel, I., Vexler, B.: A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems. Numer. Math. 120, 345–386 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  38. Richter, T., Springer, A., Vexler, B.: Efficient numerical realization of discontinuous Galerkin methods for temporal discretization of parabolic problems. Numer. Math. 124, 151–182 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  39. Springer, A., Vexler, B.: Third order convergent time discretization for parabolic optimal control problems with control constraints, Comput. Optim. Appl. 57(1), 205–240 (2014)

  40. Sritharan, S.S.: Optimal Control of Viscous Flow. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  41. Temam, R.: Navier–Stokes Equations. American Mathematical Society, Chelsea, Providence (2001)

    Google Scholar 

  42. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Spinger-Verlag, Berlin (1997)

    Book  MATH  Google Scholar 

  43. Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Graduate Studies in Mathematics. AMS, Providence (2010)

    Book  Google Scholar 

  44. Tröltzsch, F., Wachsmuth, D.: Second-order suficcient optimality conditions for the optimal control of Navier–Stokes equations. ESAIM COCV 12, 93–119 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Efthimios N. Karatzas is supported by Papakyriakopoulos Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Chrysafinos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chrysafinos, K., Karatzas, E.N. Symmetric error estimates for discontinuous Galerkin time-stepping schemes for optimal control problems constrained to evolutionary Stokes equations. Comput Optim Appl 60, 719–751 (2015). https://doi.org/10.1007/s10589-014-9695-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9695-3

Keywords

Mathematics Subject Classification

Navigation