Skip to main content
Log in

An Eulerian–Lagrangian method for optimization problems governed by multidimensional nonlinear hyperbolic PDEs

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We present a numerical method for solving tracking-type optimal control problems subject to scalar nonlinear hyperbolic balance laws in one and two space dimensions. Our approach is based on the formal optimality system and requires numerical solutions of the hyperbolic balance law forward in time and its nonconservative adjoint equation backward in time. To this end, we develop a hybrid method, which utilizes advantages of both the Eulerian finite-volume central-upwind scheme (for solving the balance law) and the Lagrangian discrete characteristics method (for solving the adjoint transport equation). Experimental convergence rates as well as numerical results for optimization problems with both linear and nonlinear constraints and a duct design problem are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baines, M., Cullen, M., Farmer, C., Giles, M., Rabbitt, M. (eds.): 8th ICFD Conference on Numerical Methods for Fluid Dynamics. Part 2. Wiley, Chichester (2005). Papers from the Conference held in Oxford, 2004, Int. J. Numer. Methods Fluids 47(10–11) (2005).

  2. Banda, M., Herty, M.: Adjoint IMEX-based schemes for control problems governed by hyperbolic conservation laws. Comput. Optim. Appl. 51(2), 909–930 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bianchini, S.: On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discret. Contin. Dyn. Syst. 6, 329–350 (2000)

    Google Scholar 

  4. Bouchut, F., James, F.: One-dimensional transport equations with discontinuous coefficients. Nonlinear Anal. 32, 891–933 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bouchut, F., James, F.: Differentiability with respect to initial data for a scalar conservation law. In: Hyperbolic Problems: Theory, Numerics, Applications, Vol. I (Zürich, 1998), vol. 129. Int. Ser. Numer. Math. Birkhäuser, Basel, pp. 113–118 (1999)

  6. Bouchut, F., James, F.: Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness. Commun. Partial Differ. Equ. 24, 2173–2189 (1999)

    Google Scholar 

  7. Bouchut, F., James, F., Mancini, S.: Uniqueness and weak stability for multi-dimensional transport equations with one-sided Lipschitz coefficient. Ann. Sc. Norm. Super. Pisa Cl. Sci 5(4), 1–25 (2005)

    MathSciNet  Google Scholar 

  8. Bressan, A., Guerra, G.: Shift-differentiability of the flow generated by a conservation law. Discret. Contin. Dyn. Syst. 3, 35–58 (1997)

    Google Scholar 

  9. Bressan, A., Lewicka, M.: Shift differentials of maps in BV spaces. In: Nonlinear Theory of Generalized Functions (Vienna, 1997), vol. 401. Chapman & Hall/CRC Res. Notes Math. Chapman & Hall/CRC, Boca Raton, FL, pp. 47–61 (1999)

  10. Bressan, A., Marson, A.: A variational calculus for discontinuous solutions to conservation laws. Commun. Partial Differ. Equ. 20, 1491–1552 (1995)

    Google Scholar 

  11. Bressan, A., Shen, W.: Optimality conditions for solutions to hyperbolic balance laws, control methods in PDE-dynamical systems. Contemp. Math. 426, 129–152 (2007)

    Google Scholar 

  12. Calamai, P., Moré, J.: Projected gradient methods for linearly constrained problems. Math. Program. 39, 93–116 (1987)

    Article  MATH  Google Scholar 

  13. Castro, C., Palacios, F., Zuazua, E.: An alternating descent method for the optimal control of the inviscid Burgers equation in the presence of shocks. Math. Models Methods Appl. Sci. 18, 369–416 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chertock, A., Kurganov, A.: On a hybrid finite-volume particle method, M2AN Math. Model. Numer. Anal 38, 1071–1091 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chertock, A., Kurganov, A.: On a practical implementation of particle methods. Appl. Numer. Math. 56, 1418–1431 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cliff, E., Heinkenschloss, M., Shenoy, A.: An optimal control problem for flows with discontinuities. J. Optim. Theory Appl. 94, 273–309 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Frank, P., Subin, G.: A comparison of optimization-based approaches for a model computational aerodynamics design problem. J. Comput. Phys. 98, 74–89 (1992)

    Article  MATH  Google Scholar 

  18. Giles, M., Ulbrich, S.: Convergence of linearized and adjoint approximations for discontinuous solutions of conservation laws. Part 1: Linearized approximations and linearized output functionals. SIAM J. Numer. Anal. 48, 882–904 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Giles, M., Ulbrich, S.: Convergence of linearized and adjoint approximations for discontinuous solutions of conservation laws. Part 2: Adjoint approximations and extensions. SIAM J. Numer. Anal. 48, 905–921 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Giles, M.B.: Analysis of the accuracy of shock-capturing in the steady quasi 1d-euler equations. Int. J. Comput. Fluid Dynam. 5, 247–258 (1996)

    Google Scholar 

  21. Giles, M.B.: Discrete adjoint approximations with shocks. In: Hyperbolic Problems: Theory, Numerics, Applications, pp. 185–194. Springer, Berlin (2003)

  22. Giles, M.B., Pierce, N.A.: Analytic adjoint solutions for the quasi-one-dimensional Euler equations. J. Fluid Mech. 426, 327–345 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Giles, M.B., Pierce, N.A.: Adjoint error correction for integral outputs. In: Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics, vol. 25, Lect. Notes Comput. Sci. Eng., Springer, Berlin, pp. 47–95 (2003)

  24. Giles, M.B., Süli, E.: Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. Acta Numer. 11, 145–236 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gosse, L., James, F.: Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients. Math. Comput. 69, 987–1015 (2000)

    Google Scholar 

  26. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Harten, A., Lax, P., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25, 35–61 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  28. James, F., Sepúlveda, M.: Convergence results for the flux identification in a scalar conservation law. SIAM J. Control Optim. 37, 869–891 (1999) (electronic)

    Google Scholar 

  29. Kelley, C.: Iterative methods for optimization. Frontiers in Applied Mathematics. Philadelphia, PA: Society for Industrial and Applied Mathematics. xv 180 p (1999)

  30. Kurganov, A.: Conservation Laws: Stability of Numerical Approximations and Nonlinear Regularization, PhD Dissertation, Tel-Aviv University, School of Mathematical Sciences (1998)

  31. Kurganov, A., Lin, C.-T.: On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2, 141–163 (2007)

    MATH  MathSciNet  Google Scholar 

  32. Kurganov, A., Noelle, S., Petrova, G.: Semi-discrete central-upwind scheme for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM J. Sci. Comput. 23, 707–740 (2001)

    Google Scholar 

  33. Kurganov, A., Tadmor, E.: New high resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160, 241–282 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kurganov, A., Tadmor, E.: Solution of two-dimensional riemann problems for gas dynamics without riemann problem solvers. Numer. Methods Partial Differ. Equ. 18, 584–608 (2002)

    Google Scholar 

  35. Lie, K.-A., Noelle, S.: On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput. 24, 1157–1174 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. Liu, Z., Sandu, A.: On the properties of discrete adjoints of numerical methods for the advection equation. Int. J. Numer. Methods Fluids 56, 769–803 (2008)

    Google Scholar 

  37. Nessyahu, H., Tadmor, E.: Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  38. Nessyahu, H., Tadmor, E.: The convergence rate of approximate solutions for nonlinear scalar conservation laws. SIAM J. Numer. Anal. 29, 1505–1519 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  39. Nessyahu, H., Tadmor, E., Tassa, T.: The convergence rate of Godunov type schemes. SIAM J. Numer. Anal. 31, 1–16 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  40. Pierce, N.A., Giles, M.B.: Adjoint and defect error bounding and correction for functional estimates. J. Comput. Phys. 200, 769–794 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  41. Rusanov, V.: The calculation of the interaction of non-stationary shock waves with barriers. Ž. Vyčisl. Mat. i Mat. Fiz. 1, 267–279 (1961)

    MathSciNet  Google Scholar 

  42. Spellucci, P.: Numerical Methods of Nonlinear Optimization (Numerische Verfahren der nichtlinearen Optimierung). ISNM Lehrbuch. Basel: Birkhäuser. 576 S (1993)

  43. Sweby, P.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  44. Ulbrich, S.: Optimal control of nonlinear hyperbolic conservation laws with source terms, Habilitation thesis, Fakultät für Mathematik, Technische Universität München, http://www3.mathematik.tu-darmstadt.de/hp/optimierung/ulbrich-stefan/ (2001)

  45. Ulbrich, S.: Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws. Syst. Control Lett. 48, 313–328 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  46. Ulbrich, S.: On the superlinear local convergence of a filer-sqp method. Math. Program. Ser. B 100, 217–245 (2004)

    Google Scholar 

  47. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Article  Google Scholar 

Download references

Acknowledgments

The work of A. Chertock was supported in part by the NSF Grants DMS-0712898 and DMS-1115682. The work of M. Herty was supported by the DAAD 54365630, 55866082, EXC128. The work of A. Kurganov was supported in part by the NSF Grant DMS-1115718 and the German Research Foundation DFG under the Grant No. INST 247/609-1. The authors also acknowledge the support by NSF RNMS Grant DMS-1107444.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Herty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chertock, A., Herty, M. & Kurganov, A. An Eulerian–Lagrangian method for optimization problems governed by multidimensional nonlinear hyperbolic PDEs. Comput Optim Appl 59, 689–724 (2014). https://doi.org/10.1007/s10589-014-9655-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9655-y

Keywords

Navigation