Skip to main content
Log in

An iterative algorithm for sparse and constrained recovery with applications to divergence-free current reconstructions in magneto-encephalography

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We propose an iterative algorithm for the minimization of a 1-norm penalized least squares functional, under additional linear constraints. The algorithm is fully explicit: it uses only matrix multiplications with the three matrices present in the problem (in the linear constraint, in the data misfit part and in the penalty term of the functional). None of the three matrices must be invertible. Convergence is proven in a finite-dimensional setting. We apply the algorithm to a synthetic problem in magneto-encephalography where it is used for the reconstruction of divergence-free current densities subject to a sparsity promoting penalty on the wavelet coefficients of the current densities. We discuss the effects of imposing zero divergence and of imposing joint sparsity (of the vector components of the current density) on the current density reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Beck, A., Teboulle, M.: A fast iterative shrinkage-threshold algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonettini, S., Ruggiero, V.: An alternating extragradient method for total variation-based image restoration from Poisson data. Inverse Probl. 27(9), 095001 (2011)

    Article  MathSciNet  Google Scholar 

  3. Brodie, J., Daubechies, I., De Mol, C., Giannone, D., Loris, I.: Sparse and stable Markowitz portfolios. Proc. Natl. Acad. Sci. USA 106(30), 12267–12272 (2009)

    Article  MATH  Google Scholar 

  4. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Candès, E., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  6. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  7. Cohen, A., Daubechies, I., Feaveau, J.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45(5), 485–560 (1992)

    Article  MATH  Google Scholar 

  8. Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, Berlin (2011)

    Chapter  Google Scholar 

  9. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  10. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MATH  Google Scholar 

  11. Del Gratta, C., Pizzella, V., Tecchio, F., Romani, G.: Magnetoencephalography—a noninvasive brain imaging method with 1 ms time resolution. Rep. Prog. Phys. 64(12), 1759–1814 (2001)

    Article  Google Scholar 

  12. Fornasier, M., Pitolli, F.: Adaptive iterative thresholding algorithms for magnetoencephalography (MEG). J. Comput. Appl. Math. 221(2), 386–395 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fornasier, M., Rauhut, H.: Recovery algorithms for vector-valued data with joint sparsity constraints. SIAM J. Numer. Anal. 46(2), 577–613 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lemarie-Rieusset, P.G.: Ondelettes vecteurs à divergence nulle. C. R. Acad. Sci. Paris 313(5), 213–216 (1991)

    MathSciNet  MATH  Google Scholar 

  15. Lemarie-Rieusset, P.G.: Analyses multi-résolutions non orthogonales, commutation entre projecteurs et dérivation et ondelettes vecteurs à divergence nulle. Rev. Mat. Iberoam. 8(2), 221–237 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Litvinov, W.G., Rahman, T., Tai, X.-C.: A modified TV-Stokes model for image processing. SIAM J. Sci. Comput. 33(4), 1574–1597 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Loris, I., Verhoeven, C.: On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty. Inverse Probl. 27(12), 125007 (2011)

    Article  MathSciNet  Google Scholar 

  18. Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Academic Press, San Diego (2009)

    MATH  Google Scholar 

  19. Ronchi, C., Iacono, R., Paolucci, P.: The “cubed sphere”: A new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys. 124(1), 93–114 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica, D 60(1–4), 259–268 (1992)

    Article  MATH  Google Scholar 

  21. Simons, F.J., Loris, I., Nolet, G., Daubechies, I.C., Voronin, S., Judd, J.S., Vetter, P.A., Charléty, J., Vonesch, C.: Solving or resolving global tomographic models with spherical wavelets, and the scale and sparsity of seismic heterogeneity. Geophys. J. Int. 187(2), 969–988 (2011)

    Article  Google Scholar 

  22. Stevenson, R.: Divergence-free wavelet bases on the hypercube: free-slip boundary conditions, and applications for solving the instationary Stokes equations. Math. Comput. 80(275), 1499–1523 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, X., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46(1), 20–46 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I.L. is research associate of the Fonds de la recherche Scientifique-FNRS (Belgium). Part of this research was done while the authors were at the Computational and Applied Mathematics Programme of the Vrije Universiteit Brussel and was supported by VUB GOA-062 and by the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen grant G.0564.09N. The authors would like to thank M. Fornasier and F. Pitolli for the useful discussions on MEG and the referees for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignace Loris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loris, I., Verhoeven, C. An iterative algorithm for sparse and constrained recovery with applications to divergence-free current reconstructions in magneto-encephalography. Comput Optim Appl 54, 399–416 (2013). https://doi.org/10.1007/s10589-012-9482-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-012-9482-y

Keywords

Navigation