Skip to main content
Log in

On the iterative solution of KKT systems in potential reduction software for large-scale quadratic problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Iterative solvers appear to be very promising in the development of efficient software, based on Interior Point methods, for large-scale nonlinear optimization problems. In this paper we focus on the use of preconditioned iterative techniques to solve the KKT system arising at each iteration of a Potential Reduction method for convex Quadratic Programming. We consider the augmented system approach and analyze the behaviour of the Constraint Preconditioner with the Conjugate Gradient algorithm. Comparisons with a direct solution of the augmented system and with MOSEK show the effectiveness of the iterative approach on large-scale sparse problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altman, A., Gondzio, J.: Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization. Optim. Methods Softw. 11–12, 275–302 (1999)

    Article  MathSciNet  Google Scholar 

  2. Andersen, E.D., Gondzio, J., Meszaros, C., Xu, X.: Implementation of interior point methods for large scale linear programming. In: Terlaky T. (ed.) Interior Point Methods in Mathematical Programming, pp. 189–252. Kluwer Academic, Dordrecht (1996)

    Google Scholar 

  3. Andersen, E.D., Ye, Y.: A Computational study of the homogeneous algorithm for large-scale convex optimization. Comput. Optim. Appl. 10(3), 243–269 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Axelsson, O.: Preconditioning of indefinite problems by regularization. SIAM J. Numer. Anal. 16, 58–69 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Benson, H.Y., Shanno, D., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: jamming and numerical testing. Math. Program. Ser. A 99, 35–48 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numerica 14, 1–137 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bergamaschi, L., Gondzio, J., Zilli, G.: Preconditioning indefinite systems in interior point methods for optimization. Comput. Optim. Appl. 28(2), 149–171 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Byrd, R., Hribar, M.E., Nocedal, J.: An interior point method for large scale nonlinear programming. SIAM J. Optim. 9(4), 877–900 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cafieri, S., D’Apuzzo, M., Marino, M., Mucherino, A., Toraldo, G.: Interior point solver for large-scale quadratic programming problems with bound constraints. J. Optim. Theory Appl. 129(1), 55–75 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Carpenter, T.J., Shanno, D.F.: An interior point method for quadratic programs based on conjugate projected gradients. Comput. Optim. Appl. 2, 5–28 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Czyzyk, J., Mehrotra, S., Wagner, M., Wright, S.J.: PCx User Guide (version 1.1). Technical report OTC 96/01, Optimization Technology Center, Argonne National Laboratory (1997). See also http://www-fp.mcs.anl.gov/otc/Tools/PCx/

  12. D’Apuzzo, M., Marino, M.: Parallel computational issues of an interior point method for solving large bound constrained quadratic programming problems. Parallel Comput. 29, 467–483 (2003)

    Article  MathSciNet  Google Scholar 

  13. Dollar, H., Wathen, A.: Incomplete factorization constraint preconditioners for saddle-point matrices, Research Report NA-04/01. Numerical Analysis Group, Oxford University (2004)

  14. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear equations. ACM Trans. Math. Softw. 9(3), 302–325 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Durazzi, C., Ruggiero, V.: Indefinitely preconditioned conjugate gradient method for large sparse equality and inequality constrained quadratic problems. Numer. Linear Algebra Appl. 10(8), 673–688 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Durazzi, C., Ruggiero, V., Zanghirati, G.: Parallel interior-point method for linear and quadratic programs with special structure. J. Optim. Theory Appl. 110, 289–313 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Forsgren, A., Gill, P.E., Shinnerl, J.R.: Stability of symmetric ill-conditioned systems arising in interior methods for constrained optimization. SIAM J. Matrix Anal. Appl. 17, 187–211 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Freund, R.W., Jarre, F.: A QMR-based interior-point algorithm for solving linear programs. Technical report, AT&T Bell Laboratories and Institute für Angewandte Mathematik und Statistik (1995)

  19. Freund, R.M., Mizuno, S.: Interior point methods: current status and future directions. In:  Frenk H., et al. (eds.) High Performance Optimization, pp. 441–466. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  20. Gertz, E.M., Wright, S.J.: Object-oriented software for quadratic programming. ACM Trans. Math. Softw. 29, 58–81 (2003). See also http://www.cs.wisc.edu/ swright/ooqp/

    Article  MATH  MathSciNet  Google Scholar 

  21. Gill, P.E., Murray, W., Ponceleon, B.D., Saunders, M.A.: Preconditioners for indefinite systems arising in optimization. SIAM J. Matrix Anal. Appl. 13, 292–311 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gill, P.E., Murray, W., Saunders, M.A., Tomlin, J.A., Wright, M.H.: On projected Newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method. Math. Program. 36, 183–209 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Golub, G.H., Wathen, A.J.: An iteration for indefinite systems and its application to the Navier–Stokes equations. SIAM J. Sci. Comput. 19, 530–539 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gondzio, J.: HOPDM (version 2.12)—a fast LP solver based on a primal–dual interior point method. Eur. J. Oper. Res. 85, 221–225 (1995). See also http://www.maths.ed.ac.uk/gondzio/software/hopdm.html

    Article  MATH  Google Scholar 

  25. Gonzaga, C.C.: Path-following methods for linear programming. SIAM Rev. 34, 167–224 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gould, N.I.M., Hribar, M.E., Nocedal, J.: On the solution of equality constrained quadratic programming problems arising in optimization. SIAM J. Sci. Comput. 23(4), 1375–1394 (2001)

    Article  MathSciNet  Google Scholar 

  27. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEr and SifDec: a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Han, C.G., Pardalos, P.M., Ye, Y.: Computational aspects of an interior point algorithm for quadratic programming problems with box constraints. In: Coleman T., Li Y. (eds.) Large-Scale Numerical Optimization. SIAM, Philadelphia (1990)

    Google Scholar 

  29. Haws, J., Mayer, C.: Preconditioning KKT systems. Technical report M&CT-Tech-01-021, The Boeing Co. (2001)

  30. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–395 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  31. Karmarkar, N., Ramakrishnan, K.: Computational results of an interior point algorithm for large scale linear programming. Math. Program. 52, 555–586 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  32. Keller, C., Gould, N., Wathen, A.: Constraint preconditioning for indefinite linear systems. SIAM J. Matrix Anal. Appl. 21(4), 1300–1317 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kojima, M., Mizuno, S., Yoshise, A.: An \(O(\sqrt{(}n)L)\) iteration potential reduction algorithm for linear complementarity problems. Math. Program. 50, 331–342 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lazarov, R.D., Vassilevski, P.S.: Preconditioning saddle-point problems arising from mixed finite element discretizations of elliptic equations. Numer. Linear Algebra Appl. 3(1), 1–20 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  35. Luksan, L., Matonoha, C., Vlcek, J.: Interior-point method for non-linear non-convex optimization. Numer. Linear Algebra Appl. 11, 431–453 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Luksan, L., Vlcek, J.: Indefinitely preconditioned inexact Newton method for large sparse equality constrained nonlinear programming problems. Numer. Linear Algebra Appl. 5, 219–247 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  37. Lustig, J., Marsten, R.E., Shanno, D.F.: On Implementing mehrotra’s predictor corrector interior point method for linear programming. SIAM J. Optim. 2, 435–449 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  38. Lustig, J., Marsten, R.E., Shanno, D.F.: Interior point methods for linear programming: computational state of the art. ORSA J. Comput. 6(1), 1–15 (1994)

    MATH  MathSciNet  Google Scholar 

  39. Mehrotra, S.: Implementations of affine scaling methods: Approximate solutions of systems of linear equations using preconditioned conjugate gradient method. ORSA J. Comput. 4(2), 102–118 (1992)

    MathSciNet  Google Scholar 

  40. Mehrotra, S., Wang, J.: Conjugate gradient based implementation of interior point methods for network flow problems. In: Adams L., Nazareth L. (eds.) AMS Summer Conference Proceedings, pp. 124–142. SIAM, Philadelphia (1996)

    Google Scholar 

  41. Morales, J., Nocedal, J., Waltz, R., Liu, G., Goux, J.: Assessing the potential of interior methods for nonlinear optimization. Technical report OTC 2001/04, Optimization Technology Center (2001)

  42. MOSEK ApS: The MOSEK optimization tools version 3.1 (revision 28). Users manual and reference (2002). See also http://www.mosek.com/

  43. Nesterov, Y., Nemirovskii, A.: Interior Point Polynomial Methods in Convex Programming. SIAM Series in Applied Mathematics. SIAM, Philadelphia (1994)

    Google Scholar 

  44. Oliveira, A.R., Sorensen, D.C.: Computational experience with a preconditioner for interior point methods for linear programming. Technical report TR97-28, Deptartment of Computational and Applied Mathematics, Rice University, Houston, TX (1997)

  45. Pardalos, P., Wolkowicz, H. (eds.): Topics in Semidefinite and Interior-Point Methods. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  46. Perugia, I., Simoncini, V.: Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations. Numer. Linear Algebra Appl. 7(7/8), 585–616 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  47. Portugal, L., Resende, M., Veiga, G., Judice, J.: An efficient implementation of the infeasible primal–dual network flow method. Technical report, AT&T Bell Laboratories, New Jersey (1994)

  48. Rozloznik, M., Simoncini, V.: Krylov subspace Methods for Saddle Point Problems with Indefinite Preconditioning. SIAM J. Matrix Anal. Appl. 24(2), 368–391 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  49. Tanabe, K.: Centered Newton method for mathematical programming. In: Iri M., Yajima K. (eds.) System Modeling and Optimization: Proceedings of the 13th IFIP Conference. Lecture Notes in Control and Information Systems, vol. 113, pp. 197–206. Springer, New York (1988)

    Google Scholar 

  50. Todd, M.J.: Potential-reduction methods in mathematical programming. Math. Program. 76, 3–45 (1996)

    MathSciNet  Google Scholar 

  51. Todd, M.J., Ye, Y.: A centered projective algorithm for linear programming. Math. Oper. Res. 15, 508–529 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  52. Vanderbei, R.J.: Symmetric quasi-definite matrices. SIAM J. Optim. 5, 100–113 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  53. Vanderbei, R.J.: LOQO User’s Manual (version 3.10). Technical report SOR-97-08, Department of Civil Engineering and Operations Research, Princeton University (1997). See also http://www.orfe.princeton.edu/~loqo/

  54. Waltz, R.A.: KNITRO 4.0 User’s Manual. Ziena Optimization, Evanston (2004). See also http://www.ziena.com/knitro.html

    Google Scholar 

  55. Wright, M.H.: Interior methods for constrained optimization. In: Acta Numerica, vol. 1, pp. 341–407. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  56. Wright, M.H.: Ill-conditioning and computational error in primal–dual interior methods for nonlinear programming. SIAM J. Optim. 9, 84–111 (1998)

    Article  MATH  Google Scholar 

  57. Wright, S.J.: Primal–Dual Interior-Point Methods. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  58. Wright, S.J.: Stability of augmented system factorizations in interior point methods. SIAM J. Matrix Anal. Appl. 18, 191–222 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  59. Ye, Y.: Interior Point Algorithms: Theory and Analysis. Wiley, New York (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. di Serafino.

Additional information

Work partially supported by the Italian MIUR FIRB Project Large Scale Nonlinear Optimization, grant no. RBNE01WBBB.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cafieri, S., D’Apuzzo, M., De Simone, V. et al. On the iterative solution of KKT systems in potential reduction software for large-scale quadratic problems. Comput Optim Appl 38, 27–45 (2007). https://doi.org/10.1007/s10589-007-9035-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9035-y

Keywords

Navigation