Skip to main content
Log in

On a class of nonlinear problems involving a p(x)-Laplace type operator

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We study the boundary value problem \( - div((\left| {\nabla u} \right|^{p_1 (x) - 2} + \left| {\nabla u} \right|^{p_2 (x) - 2} )\nabla u) = f(x,u) \) in Ω, u = 0 on ∂Ω, where Ω is a smooth bounded domain in ℝN. Our attention is focused on two cases when \( f(x,u) = \pm ( - \lambda \left| u \right|^{m(x) - 2} u + \left| u \right|^{q(x) - 2} u) \), where m(x) = max{p 1(x), p 2(x)} for any x\( \bar \Omega \) or m(x) < q(x) < N · m(x)/(Nm(x)) for any x\( \bar \Omega \). In the former case we show the existence of infinitely many weak solutions for any λ > 0. In the latter we prove that if λ is large enough then there exists a nontrivial weak solution. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with a ℤ2-symmetric version for even functionals of the Mountain Pass Theorem and some adequate variational methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Acerbi and G. Mingione: Regularity results for a class of functionals with nonstandard growth. Arch. Rational Mech. Anal. 156 (2001), 121–140.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. O. Alves and M. A. S. Souto: Existence of solutions for a class of problems involving the p(x)-Laplacian. Progress in Nonlinear Differential Equations and Their Applications 66 (2005), 17–32.

    Article  MathSciNet  Google Scholar 

  3. A. Ambrosetti and P. H. Rabinowitz: Dual variational methods in critical point theory and applications. J. Functional Analysis 14 (1973), 349–381.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Brezis: Analyse fonctionnelle: théorie et applications. Masson, Paris, 1992.

    Google Scholar 

  5. L. Diening: Theorical and numerical results for electrorheological fluids. Ph.D. thesis, University of Freiburg, Germany, 2002.

    Google Scholar 

  6. D. E. Edmunds, J. Lang and A. Nekvinda: On L p(x) norms. Proc. Roy. Soc. London Ser. A 455 (1999), 219–225.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. E. Edmunds and J. Rákosník: Density of smooth functions in W k,p(x)(Ω). Proc. Roy. Soc. London Ser. A 437 (1992), 229–236.

    MathSciNet  MATH  Google Scholar 

  8. D. E. Edmunds and J. Rákosník: Sobolev embedding with variable exponent. Studia Math. 143 (2000), 267–293.

    MathSciNet  MATH  Google Scholar 

  9. X. Fan, J. Shen and D. Zhao: Sobolev embedding theorems for spaces W k,p(x)(Ω). J. Math. Anal. Appl. 262 (2001), 749–760.

    Article  MathSciNet  MATH  Google Scholar 

  10. X. L. Fan and Q. H. Zhang: Existence of solutions for p(x)-Laplacian Dirichlet problem. Nonlinear Anal. 52 (2003), 1843–1852.

    Article  MathSciNet  MATH  Google Scholar 

  11. X. L. Fan, Q. H. Zhang and D. Zhao: Eigenvalues of p(x)-Laplacian Dirichlet problem. J. Math. Anal. Appl. 302 (2005), 306–317.

    Article  MathSciNet  MATH  Google Scholar 

  12. X. L. Fan and D. Zhao: On the spaces L p(x)(Ω) and W m,p(x)(Ω). J. Math. Anal. Appl. 263 (2001), 424–446.

    Article  MathSciNet  MATH  Google Scholar 

  13. T. C. Halsey: Electrorheological fluids. Science 258 (1992), 761–766.

    Article  Google Scholar 

  14. O. Kováčik and J. Rákosník: On spaces L p(x) and W 1,p(x). Czech. Math. J. 41 (1991), 592–618.

    Google Scholar 

  15. H. G. Leopold: Embedding on function spaces of variable order of differentiation in function spaces of variable order of integration. Czech. Math. J. 49 (1999), 633–644.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Marcellini: Regularity and existence of solutions of elliptic equations with p, q growth conditions. J. Differential Equations 90 (1991), 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Mihăilescu: Elliptic problems in variable exponent spaces. Bull. Austral. Math. Soc. 74 (2006), 197–206.

    MathSciNet  MATH  Google Scholar 

  18. M. Mihăilescu and V. Rădulescu: A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. Roy. Soc. London Ser. A 462 (2006), 2625–2641.

    Article  MATH  Google Scholar 

  19. M. Mihăilescu and V. Rădulescu: On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent. Proceedings of the American Mathematical Society 135 (2007), no. 9, 2929–2937.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Musielak: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, Vol. 1034, Springer, Berlin, 1983.

    MATH  Google Scholar 

  21. J. Musielak and W. Orlicz: On modular spaces. Studia Math. 18 (1959), 49–65.

    MathSciNet  MATH  Google Scholar 

  22. H. Nakano: Modulared Semi-Ordered Linear Spaces. Maruzen Co., Ltd., Tokyo, 1950.

    MATH  Google Scholar 

  23. W. Orlicz: Über konjugierte Exponentenfolgen. Studia Math. 3 (1931), 200–211.

    MATH  Google Scholar 

  24. C. Pfeiffer, C. Mavroidis, Y. Bar-Cohen and B. Dolgin: Electrorheological fluid based force feedback device, in Proceedings of the 1999 SPIE Telemanipulator and Telepresence Technologies VI Conference (Boston, MA), Vol. 3840. 1999, pp. 88–99.

    Google Scholar 

  25. P. Rabinowitz: Minimax methods in critical point theory with applications to differential equations, Expository Lectures from the CBMS Regional Conference held at the University of Miami, American Mathematical Society, Providence, RI. 1984.

    Google Scholar 

  26. M. Ruzicka: Electrorheological Fluids Modeling and Mathematical Theory. Springer-Verlag, Berlin, 2002.

    Google Scholar 

  27. I. Sharapudinov: On the topology of the space L p(t)([0; 1]). Matem. Zametki 26 (1978), 613–632.

    MathSciNet  Google Scholar 

  28. M. Struwe: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, Heidelberg, 1996.

    MATH  Google Scholar 

  29. I. Tsenov: Generalization of the problem of best approximation of a function in the space L s. Uch. Zap. Dagestan Gos. Univ. 7 (1961), 25–37.

    Google Scholar 

  30. W. M. Winslow: Induced fibration of suspensions. J. Appl. Phys. 20 (1949), 1137–1140.

    Article  Google Scholar 

  31. Q. Zhang: A strong maximum principle for differential equations with nonstandard p(x)-growth conditions. J. Math. Anal. Appl. 312 (2005), 24–32.

    Article  MathSciNet  MATH  Google Scholar 

  32. V. Zhikov: Averaging of functionals in the calculus of variations and elasticity. Math. USSR Izv. 29 (1987), 33–66.

    Article  Google Scholar 

  33. V. Zhikov: On passing to the limit in nonlinear variational problem. Math. Sb. 183 (1992), 47–84.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Mihăilescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihăilescu, M. On a class of nonlinear problems involving a p(x)-Laplace type operator. Czech Math J 58, 155–172 (2008). https://doi.org/10.1007/s10587-008-0011-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-008-0011-1

Keywords

Navigation