Skip to main content
Log in

Medical diagnosis using interval type-2 fuzzy similarity measures

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Concerning decision support in specific disease areas, making faster and more accurate medical diagnoses has become more challenging. Due to indeterminate, inconsistent, and huge patient data, judging a specific disease may be challenging. Similarity is an effective method to enhance healthcare systems by simplifying medical diagnostic generation compared with illness profiles. This paper proposes a new medical diagnosis algorithm that uses interval type-2 fuzzy similarity measures (IT-2FSMs). This algorithm calculates the degree of similarity between varieties of components of patient data and establishes methods of clustering patients based on close distances between some of their features. The proposed approach will be evaluated on UCI Machine Learning Repository medical datasets. Comparative studies will be done between different IT-2 FSMs (Cherif, Jaccard, Bustince, Mitchell, Gorzalczany, Zeng and Li) to demonstrate the capability of IT-2FSMs to make quick medical diagnoses, even with different noise levels. The proposed IT-2FSMs are utilized as a clustering method and compared against existing clustering algorithms such as type-2 fuzzy c-means, cluster forest, bagged clustering, evidence accumulation, and random projection. The IT-2FSMs demonstrate a pertinent classification accuracy comparable to the other algorithms, as assessed by the clustering quality parameter R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The datasets are available through the following links: https://archive.ics.uci.edu/dataset/161/mammographic+mass; https://archive.ics.uci.edu/dataset/145/statlog+heart.

References

  1. Abbes, W., Kchaou, H., Kechaou, Z., et al.: A hybrid algorithm for service bursting based on GA and BPSO in hybrid clouds. In: 2023 IEEE Symposium on Computers and Communications (ISCC), pp. 200–205 (2023). https://doi.org/10.1109/ISCC58397.2023.10218272

  2. Ben Ayed, A., Ben Halima, M., Cherif, S., et al.: Robust clustering based possibilistic type-2 fuzzy c-means for noisy datasets. In: Enabling Machine Learning Applications in Data Science: Proceedings of Arab Conference for Emerging Technologies 2020, pp. 115–129. Springer (2021)

  3. Bilgin, A., Hagras, H., Alghazzawi, D., et al.: Employing an enhanced interval approach to encode words into linear general type-2 fuzzy sets for computing with words applications. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8 (2015). https://doi.org/10.1109/FUZZ-IEEE.2015.7337848

  4. Bustince, H.: Indicator of inclusion grade for interval-valued fuzzy sets. application to approximate reasoning based on interval-valued fuzzy sets. Int. J. Approx. Reason. 23(3), 137–209 (2000)

    Article  MathSciNet  Google Scholar 

  5. Chaabouni, T., Kchaou, H., Khemakhem, M.: Agent technology based resources management in cloud computing. In: 2013 World Congress on Computer and Information Technology (WCCIT), pp. 1–3 (2013). https://doi.org/10.1109/WCCIT.2013.6618659

  6. Cherif, S., Baklouti, N., Alimi, A.M., et al.: A Type-2 Fuzzy Concepts Lexicalized Representation by Perceptual Reasoning and Linguistic Weighted Average: A Comparative Study, pp. 77–86. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-27221-4_7

    Book  Google Scholar 

  7. Cherif, S., Baklouti, N., Alimi, A., et al.: Fuzzy feature selection based on interval type-2 fuzzy sets. In: SPIE Proceedings, Vol. 10341, p. 103412M (2017). https://doi.org/10.1117/12.2268796

  8. Cherif, S., Baklouti, N., Snasel, V., et al.: New fuzzy similarity measures: from intuitionistic to type-2 fuzzy sets. fuzz-ieee (2017) (in press)

  9. Cherif, S., Baklouti, N., Hagras, H., et al.: Novel intuitionistic-based interval type-2 fuzzy similarity measures with application to clustering. IEEE Trans. Fuzzy Syst. 30(5), 1260–1271 (2021)

    Article  Google Scholar 

  10. Coupland, S., Mendel, J., Wu, D.: Enhanced interval approach for encoding words into interval type-2 fuzzy sets and convergence of the word FOUS. In: Fuzzy Systems (FUZZ), 2010 IEEE International Conference on, pp. 1–8 (2010). https://doi.org/10.1109/FUZZY.2010.5584725

  11. Dongrui, W., Mendel, J.M.: A comparative study of ranking methods, similarity measures and uncertainty measures for interval type-2 fuzzy sets. Inf. Sci. 179(8), 1169–1192 (2009). https://doi.org/10.1016/j.ins.2008.12.010

    Article  MathSciNet  Google Scholar 

  12. Dudoit, S., Fridlyand, J.: Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19(9), 1090–1099 (2003)

    Article  Google Scholar 

  13. Elter, M., Schulz-Wendtland, R., Wittenberg, T.: The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process. Med. Phys. 34, 4164 (2007). https://doi.org/10.1118/1.2786864

    Article  Google Scholar 

  14. Fern, X.Z., Brodley, C.E.: Random projection for high dimensional data clustering: a cluster ensemble approach. In: ICML (2003)

  15. Fred, A.L.N., Jain, A.K.: Data clustering using evidence accumulation. In: ICPR (2002)

  16. Gora, P.: Intuitionistic fuzzy modulus similarity measure. Int. J. Decis. Support Syst. Technol. (IJDSST) 15(1), 1–22 (2023)

    Article  Google Scholar 

  17. Gorzalczany, M.: A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst. 21(1987), 1–17 (1987)

    Article  MathSciNet  Google Scholar 

  18. Jaccard, P.: Nouvelles recherches sur la distribution florale. Bulletin de la Societe de Vaud des Sciences Naturelles 44(1908), 223 (1908)

    Google Scholar 

  19. Jain, P., Tiwari, A.K., Som, T.: An intuitionistic fuzzy bireduct model and its application to cancer treatment. Comput. Ind. Eng. 168, 108124 (2022)

    Article  Google Scholar 

  20. Janosi, A., Steinbrunn, W., Pfisterer, M., et al.: Heart disease. UCI machine learning repository (1988). https://doi.org/10.24432/C52P4X

  21. Janoušek, J., Gajdoš, P., Radecký, M., et al.: Application of bio-inspired methods within cluster forest algorithm. In: Abraham, A., Wegrzyn-Wolska, K., Hassanien, A.E., et al (eds.) Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015, pp. 237–247. Springer International Publishing, Cham (2016)

  22. Jarraya, Y., Bouaziz, S., Hagras, H., et al.: A multi-agent architecture for the design of hierarchical interval type-2 beta fuzzy system. IEEE Trans. Fuzzy Syst. 27(6), 1174–1188 (2018)

    Article  Google Scholar 

  23. Kchaou, H., Kechaou, Z., Alimi, A.M.: A new data placement approach for scientific workflows in cloud computing environments. In: International Conference on Intelligent Systems Design and Applications, vol. 557, pp. 330–340. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-53480-0_33

  24. Kchaou, H., Kechaou, Z., Alimi, A.M.: A two-stage fuzzy c-means data placement strategy for scientific cloud workflows. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8 (2018). https://doi.org/10.1109/FUZZ-IEEE.2018.8491530

  25. Kchaou, H., Kechaou, Z., Alimi, A.M.: Interval type-2 fuzzy c-means data placement optimization in scientific cloud workflow applications. Simul. Model. Pract. Theory 107, 102217 (2021). https://doi.org/10.1016/j.simpat.2020.102217

    Article  Google Scholar 

  26. Kchaou, H., Kechaou, Z., Alimi, A.M.: A PSO task scheduling and it2fcm fuzzy data placement strategy for scientific cloud workflows. J. Comput. Sci. 64, 101840 (2022). https://doi.org/10.1016/j.jocs.2022.101840

    Article  Google Scholar 

  27. Kchaou, H., Abbes, W., Kechaou, Z., et al.: Collaborative fuzzy clustering approach for scientific cloud workflows. In: 2023 IEEE Symposium on Computers and Communications (ISCC), pp. 424–429 (2023). https://doi.org/10.1109/ISCC58397.2023.10218274

  28. Khalaj, F., Khalaj, M.: Developed cosine similarity measure on belief function theory: an application in medical diagnosis. Commun. Stat. Theory Methods 51(9), 2858–2869 (2022). https://doi.org/10.1080/03610926.2020.1782935

    Article  MathSciNet  Google Scholar 

  29. Kirişci, M.: New cosine similarity and distance measures for Fermatean fuzzy sets and TOPSIS approach. Knowl. Inf. Syst. 65(2), 855–868 (2023)

    Article  Google Scholar 

  30. Kumar, R., Singh, U.P., Bali, A., et al.: Adaptive control of unknown fuzzy disturbance-based uncertain nonlinear systems: application to hypersonic flight dynamics. J. Anal. (2023). https://doi.org/10.1007/s41478-023-00687-z

    Article  Google Scholar 

  31. Liu, Y., Xu, J., Yu, Z., et al.: Ontology characterization, enrichment analysis, and similarity calculation-based evaluation of disease–syndrome–formula associations by applying SoFDA. iMeta e80 (2023)

  32. Mendel, J.M., Hagras, H., Bustince, H., et al.: Comments on “Interval type-2 fuzzy sets are generalization of interval-valued fuzzy sets: towards a wide view on their relationship’’. Trans. Fuzzy Syst. 24(1), 249–250 (2016). https://doi.org/10.1109/TFUZZ.2015.2446508

    Article  Google Scholar 

  33. Mitchell, H.B.: Pattern recognition using type-II fuzzy sets. Inf. Sci. Inf. Comput. Sci. 170(2–4), 409–418 (2005). https://doi.org/10.1016/j.ins.2004.02.027

    Article  Google Scholar 

  34. Ontiveros, E., Melin, P., Castillo, O.: Comparative study of interval type-2 and general type-2 fuzzy systems in medical diagnosis. Inf. Sci. 525, 37–53 (2020)

    Article  MathSciNet  Google Scholar 

  35. Papakostas, G.A., Hatzimichailidis, A.G., Kaburlasos, V.G.: Distance and similarity measures between intuitionistic fuzzy sets: a comparative analysis from a pattern recognition point of view. Pattern Recognit. Lett. 34(14), 1609–1622 (2013). https://doi.org/10.1016/j.patrec.2013.05.015

    Article  Google Scholar 

  36. Rady, E.H.A., Anwar, A.S.: Prediction of kidney disease stages using data mining algorithms. Inform. Med. Unlocked 15, 100178 (2019)

    Article  Google Scholar 

  37. Sangaiah, I., Vincent Antony Kumar, A.: Improving medical diagnosis performance using hybrid feature selection via relieff and entropy based genetic search (rf-ega) approach: application to breast cancer prediction. Clust. Comput. 22, 6899–6906 (2019)

    Article  Google Scholar 

  38. Shreevastava, S., Singh, S., Tiwari, A., et al.: Different classes ratio and Laplace summation operator based intuitionistic fuzzy rough attribute selection. Iran. J. Fuzzy Syst. 18(6), 67–82 (2021)

    MathSciNet  Google Scholar 

  39. Shreevastava, S., Maratha, P., Som, T., et al.: A novel (alpha, beta)-indiscernibility-assisted intuitionistic fuzzy-rough set model and its application to dimensionality reduction. Optimization (2023). https://doi.org/10.1080/02331934.2023.2270683

    Article  Google Scholar 

  40. Suo, Q., Ma, F., Yuan, Y., et al.: Deep patient similarity learning for personalized healthcare. IEEE Trans. Nanobiosci. 17(3), 219–227 (2018)

    Article  Google Scholar 

  41. Tsiporkova, E., Zimmermann, H.J.: Aggregation of compatibility and equality: a new class of similarity measures for fuzzy sets. In: the Seventh International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Paris, pp. 1769–1776 (1998)

  42. Ünver, M., Olgun, M., Türkarslan, E.: Cosine and cotangent similarity measures based on Choquet integral for spherical fuzzy sets and applications to pattern recognition. J. Comput. Cogn. Eng. 1(1), 21–31 (2022)

    Google Scholar 

  43. Verma, A., Agarwal, G., Gupta, A.K.: A novel generalized fuzzy intelligence-based ant lion optimization for internet of things based disease prediction and diagnosis. Clust. Comput. 25(5), 3283–3298 (2022)

    Article  Google Scholar 

  44. Vitabile, S., Marks, M., Stojanovic, D., et al.: Medical data processing and analysis for remote health and activities monitoring. In: High-Performance Modelling and Simulation for Big Data Applications: Selected Results of the COST Action IC1406 cHiPSet, pp. 186–220. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  45. Wu, D., Mendel, J.: Perceptual reasoning for perceptual computing: a similarity-based approach. IEEE Trans. Fuzzy Syst. 17(6), 1397–1411 (2009). https://doi.org/10.1109/TFUZZ.2009.2032652

    Article  Google Scholar 

  46. Wu, D., Mendel, J.M.: A vector similarity measure for linguistic approximation: interval type-2 and type-1 fuzzy sets. Inf. Sci. 178(2), 381–402 (2008). https://doi.org/10.1016/j.ins.2007.04.014

    Article  MathSciNet  Google Scholar 

  47. Wu, D., Mendel, J.M., Coupland, S.: Enhanced interval approach for encoding words into interval type-2 fuzzy sets and its convergence analysis. IEEE Trans. Fuzzy Syst. 20, 499–513 (2012)

    Article  Google Scholar 

  48. Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4, 103111 (1996)

    Article  Google Scholar 

  49. Zeng, W., Li, H.: Relationship between similarity measure and entropy of interval valued fuzzy sets. Fuzzy Sets Syst. 157(11), 1477–1484 (2006). https://doi.org/10.1016/j.fss.2005.11.020

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research project was funded by the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding after Publication (Grant No. 44- PRFA-P- 82).

Funding

Program of Research Project Funding after Publication (Grant No. 44- PRFA-P- 82).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amel Ksibi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherif, S., Kchaou, H., Ksibi, A. et al. Medical diagnosis using interval type-2 fuzzy similarity measures. Cluster Comput (2024). https://doi.org/10.1007/s10586-024-04485-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04485-5

Keywords

Navigation