Skip to main content
Log in

Framework for wrapping binary swarm optimizers to the hybrid parallel cooperative coevolving version

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In recent decades with the increase in the complexity of the problems, the need for high-performance and scalable optimization tools has been inevitable. Among different phenomena introduced to optimization problems, naturally inspired algorithms are favored. Also, encountering large-scale problems, high-performance tools like parallel implementations should be needed. In order to tackle this problem, the framework has been proposed that can wrap any swarm algorithm into an outperformer parallel and hybrid version. Six accepted swarm algorithms are selected to evaluate performance and compare the wrapped version with standard versions. Six nonlinear high-dimension benchmark functions are used to test the proposed algorithms. The experimental results show that wrapped versions outperform standard versions with the measurement of average best fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Notes

  1. https://github.com/mrish-64?tab=repositories

References

  1. Nguyen, B.H., Xue, B., Zhang, M.: A survey on swarm intelligence approaches to feature selection in data mining. Swarm Evol. Comput. 54, 100663 (2020). https://doi.org/10.1016/J.SWEVO.2020.100663

    Article  Google Scholar 

  2. Sayed, G.I., Darwish, A., Hassanien, A.E.: Binary whale optimization algorithm and binary moth flame optimization with clustering algorithms for clinical breast cancer diagnoses. J. Classif. 37(1), 66–96 (2019). https://doi.org/10.1007/S00357-018-9297-3

    Article  MathSciNet  Google Scholar 

  3. Cinque, L., De Agostino, S., Lombardi, L.: Binary image compression via monochromatic pattern substitution: sequential and parallel implementations. Math. Comput. Sci. 7(2), 155–166 (2013). https://doi.org/10.1007/S11786-013-0153-X

    Article  Google Scholar 

  4. Chang, C.C., Wu, T.H., Wu, C.W.: An efficient approach to determine cell formation, cell layout and intracellular machine sequence in cellular manufacturing systems. Comput. Ind. Eng. 66(2), 438–450 (2013). https://doi.org/10.1016/J.CIE.2013.07.009

    Article  Google Scholar 

  5. Iyer, L.R., Ho, S.B.: A connectionist model of data compression in memory. Biol. Inspired Cogn. Archit. 6, 58–66 (2013). https://doi.org/10.1016/J.BICA.2013.06.005

    Article  Google Scholar 

  6. Chandrasekaran, K., Simon, S.P., Padhy, N.P.: Binary real coded firefly algorithm for solving unit commitment problem. Inf. Sci. (Ny) 249, 67–84 (2013). https://doi.org/10.1016/J.INS.2013.06.022

    Article  Google Scholar 

  7. Kennedy, J., Eberhart, R.C.: Discrete binary version of the particle swarm algorithm. Proc IEEE Int. Conf. Syst. Man Cybern. 5, 4104–4108 (1997). https://doi.org/10.1109/ICSMC.1997.637339

    Article  Google Scholar 

  8. Lv, C., Zhao, H., Yang, X.: Particle swarm optimization algorithm for quadratic assignment problem. Proc. 2011 Int. Conf. Comput. Sci. Netw. Technol. ICCSNT 2011 3, 1728–1731 (2011). https://doi.org/10.1109/ICCSNT.2011.6182302

    Article  Google Scholar 

  9. Krause, J., Cordeiro, J., Parpinelli, R.S., Lopes, H.S.: A Survey of swarm algorithms applied to discrete optimization problems. Swarm Intell. Bio-Inspired Comput. Theory Appl. (2013). https://doi.org/10.1016/B978-0-12-405163-8.00007-7

    Article  Google Scholar 

  10. Falcón-Cardona, J.G., Hernández Gómez, R., Coello Coello, C.A., Castillo Tapia, M.G.: “Parallel multi-objective evolutionary algorithms: a comprehensive survey. Swarm Evol. Comput. 67, 100960 (2021). https://doi.org/10.1016/J.SWEVO.2021.100960

    Article  Google Scholar 

  11. Talbi, E.G.: A unified view of parallel multi-objective evolutionary algorithms. J. Parallel Distrib. Comput. 133, 349–358 (2019). https://doi.org/10.1016/J.JPDC.2018.04.012

    Article  Google Scholar 

  12. Pellerin, R., Perrier, N., Berthaut, F.: A survey of hybrid metaheuristics for the resource-constrained project scheduling problem. Eur. J. Oper. Res. 280(2), 395–416 (2020). https://doi.org/10.1016/J.EJOR.2019.01.063

    Article  MathSciNet  Google Scholar 

  13. Mohammadi, M., Fazlali, M., Hosseinzadeh, M.: An effective hybrid genetic algorithm and tabu search for maximizing network lifetime using coverage sets scheduling in wireless sensor networks. J. Supercomput. (2022). https://doi.org/10.1007/S11227-022-04710-1/FIGURES/12

    Article  Google Scholar 

  14. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 866, 249–257 (1994). https://doi.org/10.1007/3-540-58484-6_269/COVER

    Article  Google Scholar 

  15. Mahdavi, S., Shiri, M.E., Rahnamayan, S.: Metaheuristics in large-scale global continues optimization: a survey. Inf. Sci. (Ny) 295, 407–428 (2015). https://doi.org/10.1016/J.INS.2014.10.042

    Article  MathSciNet  Google Scholar 

  16. Yang, Z., Tang, K., Yao, X.: Differential evolution for high-dimensional function optimization. 2007 IEEE Congr Evol. Comput. CEC 2007, 3523–3530 (2007). https://doi.org/10.1109/CEC.2007.4424929

    Article  Google Scholar 

  17. Li, X., Yao, X.: Tackling high dimensional non-separable optimization problems by cooperatively coevolving particle swarms. 2009 IEEE Congr. Evol. Comput. CEC 2009, pp. 1546–1553 (2009) doi: https://doi.org/10.1109/CEC.2009.4983126

  18. Ipchi Sheshgelani, M., Pashazadeh, S., Salehpoor, P.: Cooperative hybrid consensus with function optimization for blockchain. Clust. Comput. (2022). https://doi.org/10.1007/S10586-022-03746-5

    Article  Google Scholar 

  19. Kennedy, J., Eberhart, R.: Particle swarm optimization. Proc. ICNN'95—Int. Conf. Neural Networks, vol. 4, pp. 1942–1948 (1942) doi: https://doi.org/10.1109/ICNN.1995.488968

  20. Shen, X., Li, Y., Chen, C., Yang, J., Zhang, D.: Greedy continuous particle swarm optimization algorithm for the knapsack problems. Int. J. Comput. Appl. Technol. 44(2), 137–144 (2012). https://doi.org/10.1504/IJCAT.2012.048684

    Article  Google Scholar 

  21. Lopes, H.S., Coelho, L.S.: Particle swarm optimization with fast local search for the blind travelling salesman problem. Proc. —HIS 2005 Fifth Int. Conf. Hybrid Intell. Syst., vol. 2005, pp. 245–250 (2005) https://doi.org/10.1109/ICHIS.2005.86.

  22. Yang, X.S, Deb, S.: Cuckoo search via Lévy flights. 2009 World Congr. Nat. Biol. Inspired Comput. NABIC 2009 - Proc. pp. 210–214 (2009) https://doi.org/10.1109/NABIC.2009.5393690.

  23. Mareli, M., Twala, B.: An adaptive Cuckoo search algorithm for optimisation. Appl. Comput. Inform 14(2), 107–115 (2018). https://doi.org/10.1016/J.ACI.2017.09.001

    Article  Google Scholar 

  24. Burnwal, S., Deb, S.: Scheduling optimization of flexible manufacturing system using cuckoo search-based approach. Int. J. Adv. Manuf. Technol. 64(5), 951–959 (2012). https://doi.org/10.1007/S00170-012-4061-Z

    Article  Google Scholar 

  25. Layeb, A., Boussalia, S.R.: A novel quantum inspired cuckoo search for knapsack problems. Int.J. Inform. Technol Comput. Sci. 5, 58–67 (2012). https://doi.org/10.5815/ijitcs.2012.05.08

    Article  Google Scholar 

  26. Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019). https://doi.org/10.1016/J.FUTURE.2019.02.028

    Article  Google Scholar 

  27. "Harris Hawks optimization (HHO) Explained | Papers With Code." https://paperswithcode.com/method/hho (accessed Nov. 13, 2022).

  28. Bao, X., Jia, H., Lang, C.: A Novel hybrid harris hawks optimization for color image multilevel thresholding segmentation. IEEE Access 7, 76529–76546 (2019). https://doi.org/10.1109/ACCESS.2019.2921545

    Article  Google Scholar 

  29. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016). https://doi.org/10.1016/J.ADVENGSOFT.2016.01.008

    Article  Google Scholar 

  30. Yang, X.S., He, X.S.: Why the firefly algorithm works? Stud. Comput. Intell. 744, 245–259 (2018). https://doi.org/10.1007/978-3-319-67669-2_11/COVER

    Article  Google Scholar 

  31. . Falcon, R., Almeida, M., Nayak, A.:Fault identification with binary adaptive fireflies in parallel and distributed systems. 2011 IEEE Congr. Evol. Comput. CEC 2011, pp. 1359–1366 (2011). doi: https://doi.org/10.1109/CEC.2011.5949774.

  32. Selvakumar, B., Muneeswaran, K.: Firefly algorithm based feature selection for network intrusion detection. Comput. Secur. 81, 148–155 (2019). https://doi.org/10.1016/J.COSE.2018.11.005

    Article  Google Scholar 

  33. Al-Tashi, Q., Abdul Kadir, S.J., Rais, H.M., Mirjalili, S., Alhussian, H.: Binary optimization using hybrid grey wolf optimization for feature selection. IEEE Access 7, 39496–39508 (2019). https://doi.org/10.1109/ACCESS.2019.2906757

    Article  Google Scholar 

  34. Li, J., Gonsalves, T.: Parallel Hybrid Island Metaheuristic Algorithm. IEEE Access 10, 42254–42272 (2022). https://doi.org/10.1109/ACCESS.2022.3165830

    Article  Google Scholar 

  35. Dokeroglu, T., Pehlivan, S., Avenoglu, B.: Robust parallel hybrid artificial bee colony algorithms for the multi-dimensional numerical optimization. J. Supercomput. 76(9), 7026–7046 (2020). https://doi.org/10.1007/S11227-019-03127-7/TABLES/8

    Article  Google Scholar 

  36. J. J.— Reading, M. Addison-Wesley, and undefined 1992, "An introduction to parallel algorithms," cs.utah.edu, Accessed: Nov. 07, 2022. [Online]. Available: https://www.cs.utah.edu/~hari/teaching/bigdata/book92-JaJa-parallel.algorithms.intro.pdf

  37. Salomon, R.: Short notes on the schema theorem and the building block hypothesis in genetic algorithms. Lect. Notes Comput. Sci (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 1447, 113–122 (1998). https://doi.org/10.1007/BFB0040765/COVER

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MIS: Conceptualization, Methodology, Implementing, Review, and Editing. SP: Supervision, Validating, Reviewed, and Edited. PS: Reviewing.

Corresponding author

Correspondence to Saeid Pashazadeh.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare relevant to this article's content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ipchi Sheshgelani, M., Pashazadeh, S. & Salehpoor, P. Framework for wrapping binary swarm optimizers to the hybrid parallel cooperative coevolving version. Cluster Comput 27, 1683–1697 (2024). https://doi.org/10.1007/s10586-023-04029-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-023-04029-3

Keywords

Navigation