Skip to main content

Advertisement

Log in

Improved Harris Hawks Optimizer with chaotic maps and opposition-based learning for task scheduling in cloud environment

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Scheduling tasks in the cloud system is the main issue that needs to be addressed in order to improve customer satisfaction and system performance. This paper proposes DCOHHOTS, a novel multi-objective task scheduling algorithm based on a modified Harris hawks optimizer. In overall, this paper has two main stages. As the first step, DCOHHO is introduced as a new version of Harris Hawks Optimizer. Using the Differential Evolution algorithm, an optimal configuration is selected from the chaotic map, the opposition-based learning, and the ratio of the population. In order to improve the performance of the Harris Hawks Optimizer, this optimal configuration is applied to initialize the hawk’s position. In the second stage, DCOHHOTS, a DCOHHO-based Task Scheduling algorithm, is proposed. Multi-objective behavior in the proposed task scheduling algorithm optimizes resource utilization to decrease the makespan, energy consumption, and execution cost. Moreover, prioritizing tasks before submitting them to the scheduler is done using the hierarchical process in the DCOHHOTS algorithm. For the purpose of investigating the performance of the proposed DCOHHO algorithm, a number of experiments are conducted using 20 standard functions and twelve algorithms. The experimental results demonstrate that the DCOHHO algorithm is superior at determining the optimal test function solutions. Additionally, makespan, execution cost, resource utilization, and energy efficiency of DCOHHOTS task scheduling algorithms are analyzed. Compared to existing algorithms, the proposed algorithm saves up to 16% energy in heavy loads. Additionally, resource utilization has increased by 17%. Compared to the conventional algorithm, the proposed algorithm reduced makepan and execution cost by 26% and 8%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data availability

Data availability is not applicable—all generated data are reported in the paper.

References

  1. Mansouri, N., Zade, B.M.H., Javidi, M.M.: A multi-objective optimized replication using fuzzy based self-defense algorithm for cloud computing. J. Netw. Comput. Appl. 171, 102811 (2020)

    Article  Google Scholar 

  2. Zhang, Z., Zhao, M., Wang, H., Cui, Z., Zhang, W.: An efficient interval many-objective evolutionary algorithm for cloud task scheduling problem under uncertainty. Inf. Sci. (Ny) 583, 56–72 (2022)

    Article  Google Scholar 

  3. Ghafari, R., Kabutarkhani, F.H., Mansouri, N.: Task scheduling algorithms for energy optimization in cloud environment: a comprehensive review. Cluster Comput. (2022). https://doi.org/10.1007/s10586-021-03512-z

    Article  Google Scholar 

  4. Zade, B.M.H., Mansouri, N., Javidi, M.M.: A two-stage scheduler based on New Caledonian Crow Learning Algorithm and reinforcement learning strategy for cloud environment. J. Netw. Comput. Appl. 202, 103385 (2022)

    Article  Google Scholar 

  5. Manikandan, N., Gobalakrishnan, N., Pradeep, K.: Bee optimization based random double adaptive whale optimization model for task scheduling in cloud computing environment. Comput. Commun. 187, 35–44 (2022)

    Article  Google Scholar 

  6. Mohammad Hasani Zade, B., Mansouri, N., Javidi, M.M.: Multi-objective scheduling technique based on hybrid hitchcock bird algorithm and fuzzy signature in cloud computing. Eng. Appl. Artif. Intell. 104, 104372 (2021). https://doi.org/10.1016/j.engappai.2021.104372

    Article  Google Scholar 

  7. Pradhan, A., Bisoy, S.K., Das, A.: A survey on PSO based meta-heuristic scheduling mechanism in cloud computing environment. J. King Saud Univ. – Comput. Inf. Sci. (2021). https://doi.org/10.1016/J.JKSUCI.2021.01.003

    Article  Google Scholar 

  8. Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019)

    Article  Google Scholar 

  9. Alabool, H., Al- Arabiat, D., Abualigah, L., Heidari, A.A.: Harris hawks optimization: a comprehensive review of recent variants and applications. Neural Comput. Appl. (2021). https://doi.org/10.1007/s00521-021-05720-5

    Article  Google Scholar 

  10. Amer, D.A., Attiya, G., Zeidan, I., Nasr, A.A.: Elite learning Harris hawks optimizer for multi-objective task scheduling in cloud computing. J. Supercomput. 78, 2793–2818 (2022). https://doi.org/10.1007/s11227-021-03977-0

    Article  Google Scholar 

  11. Ewees, A.A., Abd Elaziz, M.: Performance analysis of chaotic multi-verse harris hawks optimization: a case study on solving engineering problems. Eng. Appl. Artif. Intell. 88, 103370 (2020)

    Article  Google Scholar 

  12. Chen, H., Heidari, A.A., Chen, H., Wang, M., Pan, Z., Gandomi, A.H.: Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies. Futur. Gener. Comput. Syst. 111, 175–198 (2020). https://doi.org/10.1016/j.future.2020.04.008

    Article  Google Scholar 

  13. Hussien, A.G., Amin, M.: A self-adaptive Harris Hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection. Int. J. Mach. Learn. Cybern. 13, 309–336 (2022)

    Article  Google Scholar 

  14. Mahdavi, S., Rahnamayan, S., Deb, K.: Opposition based learning: a literature review. Swarm Evol. Comput. 39, 1–23 (2018)

    Article  Google Scholar 

  15. Ajmal, M.S., Iqbal, Z., Khan, F.Z., Bilal, M., Mehmood, R.M.: Cost-based energy efficient scheduling technique for dynamic voltage and frequency scaling system in cloud computing. Sustain. Energy Technol. Assess. 45, 101210 (2021)

    Google Scholar 

  16. Houssein, E.H., Gad, A.G., Wazery, Y.M., Suganthan, P.N.: Task scheduling in cloud computing based on meta-heuristics: review, taxonomy, open challenges, and future trends. Swarm Evol. Comput. 62, 100841 (2021). https://doi.org/10.1016/j.swevo.2021.100841

    Article  Google Scholar 

  17. Dubey, K., Sharma, S.C.: A novel multi-objective CR-PSO task scheduling algorithm with deadline constraint in cloud computing. Sustain. Comput. Inform. Syst. 32, 100605 (2021). https://doi.org/10.1016/j.suscom.2021.100605

    Article  Google Scholar 

  18. Pradhan, A., Bisoy, S.K.: A novel load balancing technique for cloud computing platform based on PSO. J. King Saud Univ. - Comput. Inf. Sci. 34, 3988–3995 (2022). https://doi.org/10.1016/j.jksuci.2020.10.016

    Article  Google Scholar 

  19. Huang, X., Lin, Y., Zhang, Z., Guo, X., Su, S.: A gradient-based optimization approach for task scheduling problem in cloud computing. Cluster Comput. 25, 3481–3497 (2022). https://doi.org/10.1007/s10586-022-03580-9

    Article  Google Scholar 

  20. Singh, H., Tyagi, S., Kumar, P., Gill, S.S., Buyya, R.: Metaheuristics for scheduling of heterogeneous tasks in cloud computing environments: analysis, performance evaluation, and future directions. Simul. Model. Pract. Theory. 111, 102353 (2021). https://doi.org/10.1016/j.simpat.2021.102353

    Article  Google Scholar 

  21. Konjaang, J.K., Xu, L.: Meta-heuristic approaches for effective scheduling in infrastructure as a service cloud: a systematic review. J. Netw. Syst. Manag. 29, 15 (2021). https://doi.org/10.1007/s10922-020-09577-2

    Article  Google Scholar 

  22. Meraihi, Y., Gabis, A.B., Ramdane-Cherif, A., Acheli, D.: A comprehensive survey of crow search algorithm and its applications. Artif. Intell. Rev. 54, 2669–2716 (2021)

    Article  Google Scholar 

  23. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  24. Storn, R., Price, K.: Differrential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Tech. report, TR-95-012, Int. Comput. Sci. Inst. 11, (1995)

  25. Opara, K.R., Arabas, J.: Differential evolution: a survey of theoretical analyses. Swarm Evol. Comput. 44, 546–558 (2019)

    Article  Google Scholar 

  26. Tsai, J.-T., Fang, J.-C., Chou, J.-H.: Optimized task scheduling and resource allocation on cloud computing environment using improved differential evolution algorithm. Comput. Oper. Res. 40, 3045–3055 (2013)

    Article  Google Scholar 

  27. Pant, M., Zaheer, H., Garcia-Hernandez, L., Abraham, A.: Differential evolution: a review of more than two decades of research. Eng. Appl. Artif. Intell. 90, 103479 (2020)

    Article  Google Scholar 

  28. Yang, D., Li, G., Cheng, G.: On the efficiency of chaos optimization algorithms for global optimization. Chaos, Solitons Fractals 34, 1366–1375 (2007)

    Article  MathSciNet  Google Scholar 

  29. Ewees, A.A., El Aziz, M.A., Hassanien, A.E.: Chaotic multi-verse optimizer-based feature selection. Neural Comput. Appl. 31, 991–1006 (2019)

    Article  Google Scholar 

  30. Wang, G.-G., Guo, L., Gandomi, A.H., Hao, G.-S., Wang, H.: Chaotic krill herd algorithm. Inf. Sci. 274, 17–34 (2014). https://doi.org/10.1016/j.ins.2014.02.123

    Article  MathSciNet  Google Scholar 

  31. Mitić, M., Vuković, N., Petrović, M., Miljković, Z.: Chaotic fruit fly optimization algorithm. Knowledge-Based Syst. 89, 446–458 (2015). https://doi.org/10.1016/j.knosys.2015.08.010

    Article  Google Scholar 

  32. Ibrahim, R.A., Oliva, D., Ewees, A.A., Lu, S.: Feature selection based on improved runner-root algorithm using chaotic singer map and opposition-based learning. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.-S. (eds.) International conference on neural information processing, pp. 156–166. Springer, Cham (2017)

    Chapter  Google Scholar 

  33. Han, X., Chang, X.: A chaotic digital secure communication based on a modified gravitational search algorithm filter. Inf. Sci. 208, 14–27 (2012). https://doi.org/10.1016/j.ins.2012.04.039

    Article  Google Scholar 

  34. Dehkordi, A.A., Sadiq, A.S., Mirjalili, S., Ghafoor, K.Z.: Nonlinear-based chaotic harris hawks optimizer: algorithm and internet of vehicles application. Appl. Soft Comput. 109, 107574 (2021)

    Article  Google Scholar 

  35. Tizhoosh, H.R.: Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC’06). pp. 695–701. IEEE (2005)

  36. Chen, H., Li, W., Yang, X.: A whale optimization algorithm with chaos mechanism based on quasi-opposition for global optimization problems. Expert Syst. Appl. 158, 113612 (2020)

    Article  Google Scholar 

  37. Yu, X., Xu, W., Li, C.: Opposition-based learning grey wolf optimizer for global optimization. Knowledge-Based Syst. 226, 107139 (2021)

    Article  Google Scholar 

  38. Dhargupta, S., Ghosh, M., Mirjalili, S., Sarkar, R.: Selective opposition based grey wolf optimization. Expert Syst. Appl. 151, 113389 (2020)

    Article  Google Scholar 

  39. Ergezer, M., Simon, D., Du, D.: Oppositional biogeography-based optimization. In: 2009 IEEE international conference on systems, man and cybernetics. pp. 1009–1014. IEEE (2009)

  40. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Quasi-oppositional differential evolution. In: 2007 IEEE congress on evolutionary computation. pp. 2229–2236. IEEE (2007)

  41. Kaucic, M.: A multi-start opposition-based particle swarm optimization algorithm with adaptive velocity for bound constrained global optimization. J. Glob. Optim. 55, 165–188 (2013)

    Article  MathSciNet  Google Scholar 

  42. Sanaj, M.S., Joe Prathap, P.M.: An efficient approach to the map-reduce framework and genetic algorithm based whale optimization algorithm for task scheduling in cloud computing environment. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.09.064

    Article  Google Scholar 

  43. Shukri, S.E., Al-Sayyed, R., Hudaib, A., Mirjalili, S.: Enhanced multi-verse optimizer for task scheduling in cloud computing environments. Expert Syst. Appl. 168, 114230 (2021). https://doi.org/10.1016/j.eswa.2020.114230

    Article  Google Scholar 

  44. Pirozmand, P., Hosseinabadi, A.A.R., Farrokhzad, M., Sadeghilalimi, M., Mirkamali, S., Slowik, A.: Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing. Neural Comput. Appl. 33, 13075–13088 (2021). https://doi.org/10.1007/s00521-021-06002-w

    Article  Google Scholar 

  45. Ajmal, M.S., Iqbal, Z., Khan, F.Z., Ahmad, M., Ahmad, I., Gupta, B.B.: Hybrid ant genetic algorithm for efficient task scheduling in cloud data centers. Comput. Electr. Eng. 95, 107419 (2021). https://doi.org/10.1016/j.compeleceng.2021.107419

    Article  Google Scholar 

  46. Emami, H.: Cloud task scheduling using enhanced sunflower optimization algorithm. ICT Express. 8, 97 (2021)

    Article  Google Scholar 

  47. Imene, L., Sihem, S., Okba, K., Mohamed, B.: A third generation genetic algorithm NSGAIII for task scheduling in cloud computing. J. King Saud Univ. Inf. Sci. 34, 7515 (2022)

    Google Scholar 

  48. Manikandan, N., Divya, P., Janani, S.: BWFSO: hybrid black-widow and fish swarm optimization algorithm for resource allocation and task scheduling in cloud computing. Mater. Today Proc. 62, 4903–4908 (2022). https://doi.org/10.1016/j.matpr.2022.03.535

    Article  Google Scholar 

  49. Sihwail, R., Omar, K., Ariffin, K.A.Z., Tubishat, M.: Improved harris hawks optimization using elite opposition-based learning and novel search mechanism for feature selection. IEEE Access. 8, 121127–121145 (2020)

    Article  Google Scholar 

  50. Mishra, K., Pati, J., Kumar Majhi, S.: A dynamic load scheduling in IaaS cloud using binary JAYA algorithm. J. King Saud Univ. - Comput. Inf. Sci. 34, 4914–4930 (2022). https://doi.org/10.1016/j.jksuci.2020.12.001

    Article  Google Scholar 

  51. Alboaneen, D., Tianfield, H., Zhang, Y., Pranggono, B.: A metaheuristic method for joint task scheduling and virtual machine placement in cloud data centers. Futur. Gener. Comput. Syst. 115, 201–212 (2021). https://doi.org/10.1016/j.future.2020.08.036

    Article  Google Scholar 

  52. Alsaidy, S.A., Abbood, A.D., Sahib, M.A.: Heuristic initialization of PSO task scheduling algorithm in cloud computing. J. King Saud Univ. – Comput. Inf. Sci. (2020). https://doi.org/10.1016/j.jksuci.2020.11.002

    Article  Google Scholar 

  53. Senthil Kumar, A.M., Venkatesan, M.: Task scheduling in a cloud computing environment using HGPSO algorithm. Cluster Comput. 22, 2179–2185 (2019). https://doi.org/10.1007/s10586-018-2515-2

    Article  Google Scholar 

  54. Ghanbari, S., Othman, M.: A priority based job scheduling algorithm in cloud computing. Procedia Eng. 50, 778–785 (2012). https://doi.org/10.1016/j.proeng.2012.10.086

    Article  Google Scholar 

  55. Saaty, T.L.: What is the analytic hierarchy process? In: Mitra, G., Greenberg, H.J., Lootsma, F.A., Rijkaert, M.J., Zimmermann, H.J. (eds.) Mathematical models for decision support, pp. 109–121. Springer, Berlin (1988)

    Chapter  Google Scholar 

  56. Sreenivasulu, G., Paramasivam, I.: Hybrid optimization algorithm for task scheduling and virtual machine allocation in cloud computing. Evol. Intell. 14, 1015–1022 (2021). https://doi.org/10.1007/s12065-020-00517-2

    Article  Google Scholar 

  57. Santos, P.H.D., Neves, S.M., SantAnna, D.O., Henrique, C., de Oliveira, H., Carvalho, D.: The analytic hierarchy process supporting decision making for sustainable development: an overview of applications. J. Clean Prod. 212, 119–138 (2019)

    Article  Google Scholar 

  58. Saaty, T.L.: How to make a decision: the analytic hierarchy process. Eur. J. Oper. Res. 48, 9–26 (1990)

    Article  Google Scholar 

  59. Ergu, D., Kou, G., Peng, Y., Shi, Y., Shi, Y.: The analytic hierarchy process: task scheduling and resource allocation in cloud computing environment. J. Supercomput. 64, 835–848 (2013)

    Article  Google Scholar 

  60. Gao, S., Zhang, Z., Cao, C.: Calculating weights methods in complete matrices and incomplete matrices. J. Softw. 5, 304–311 (2010)

    Article  Google Scholar 

  61. Xiao, J., Su, W., Li, S., Liu, H.: Microservices priority estimation for IoT platform based on analytic hierarchy process and fuzzy comprehensive method. World Wide Web. 25, 1851–1862 (2022). https://doi.org/10.1007/s11280-021-00937-9

    Article  Google Scholar 

  62. Van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization particle trajectories. Inf. Sci. (Ny) 176, 937–971 (2006)

    Article  MathSciNet  Google Scholar 

  63. Abd Elaziz, M., Mirjalili, S.: A hyper-heuristic for improving the initial population of whale optimization algorithm. Knowledge-Based Syst. 172, 42–63 (2019)

    Article  Google Scholar 

  64. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  65. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowledge-based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

  66. Dhiman, G., Kumar, V.: Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowledge-Based Syst. 165, 169–196 (2019). https://doi.org/10.1016/J.KNOSYS.2018.11.024

    Article  Google Scholar 

  67. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Article  Google Scholar 

  68. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27, 1053–1073 (2016)

    Article  Google Scholar 

  69. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  70. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowledge-based Syst. 96, 120–133 (2016)

    Article  Google Scholar 

  71. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks. pp. 1942–1948. IEEE (1995)

  72. Mirjalili, S., Mirjalili, S.M., Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27, 495–513 (2016)

    Article  Google Scholar 

  73. Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

RG: Programming, software development, Ideas NM: Development or design of methodology; creation of models, testing of existing code components, Writing- original draft preparation, Investigation

Corresponding author

Correspondence to N. Mansouri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix 1: Chaotic maps details

See Table 13 .

Table 13 The description of chaotic maps [63]

1.2 Appendix 2: Summary of compared meta-heuristic algorithms

See Table 14 .

Table 14 Summary information about the compared optimization algorithms

1.3 Appendix 3: Description of benchmark functions

See Table 15 .

Table 15 Benchmark functions [36]

1.4 Appendix 4: Results of DCOHHOTS compared to other algorithms

See Tables 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 .

Table 16 Makespan comparison (scenario 1)
Table 17 Energy consumption comparison (scenario 1)
Table 18 Resource utilization comparison (scenario 1)
Table 19 Execution cost comparison (scenario 1)
Table 20 Makespan comparison (scenario 2)
Table 21 Energy consumption comparison (scenario 2)
Table 22 Resource utilization comparison (scenario 2)
Table 23 Execution cost comparison (scenario 2)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafari, R., Mansouri, N. Improved Harris Hawks Optimizer with chaotic maps and opposition-based learning for task scheduling in cloud environment. Cluster Comput 27, 1421–1469 (2024). https://doi.org/10.1007/s10586-023-04021-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-023-04021-x

Keywords

Navigation