Skip to main content

Advertisement

Log in

DOCEA/D: Dual-Operator-based Constrained many-objective Evolutionary Algorithm based on Decomposition

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

System virtualization is a key technology nowadays for reducing energy consumption and investment in server computers. However this environment frequently faces the problem of virtual machine placement (VMP). In order to solve this problem effectively, we have proposed a Dual-Operator-based Constrained many-objective Evolutionary Algorithm, DOCEA/D, which employs a Decomposition-based strategy. The algorithm uses differential evolution (DE) as an evolutionary mechanism and also employs a novel diversity maintenance (DM) technique to avoid trapping in local optima. For the purpose of validating the performance of DOCEA/D, it has been compared here with other contemporary many-objective evolutionary algorithms (MaOEAs) namely MOEA/D, NSGA-III and IBEA on three instances of VMP problem. The results on the different quality indicators clearly demonstrate the superiority of DOCEA/D over the counterpart approaches. As a further proof, we graphically show the superiority of our proposed method over the competing approaches and also demonstrate the statistical significance of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article as different tables.

Notes

  1. ECU stands for EC2 Compute Units which is a unit of computing power in Amazon EC2 cloud. ECU equals the computing ability of one Xeon 2007 or Opteron 2007 CPU having a clock of 1.0 to 1.2 GHz [26].

  2. https://aws.amazon.com/ec2/instance-types/.

References

  1. Barroso, L.A., Hölzle, U.: The case for energy-proportional computing. Computer 40(12), 33–37 (2007)

    Article  Google Scholar 

  2. Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. J. Comput. Syst. Sci. 79(8), 1230–1242 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Shirvani, M.H., Rahmani, A.M., Sahafi, A.: A survey study on virtual machine migration and server consolidation techniques in DVFS-enabled cloud datacenter: taxonomy and challenges. J. King Saud Univ. Comput. Inf. Sci. 32(3), 267–286 (2020)

    Google Scholar 

  4. Meng, X., Pappas, V., Zhang, L.: Improving the scalability of data center networks with traffic-aware virtual machine placement. In: 2010 Proceedings IEEE INFOCOM, pp. 1–9. IEEE (2010)

  5. Malekloo, M.-H., Kara, N., El Barachi, M.: An energy efficient and SLA compliant approach for resource allocation and consolidation in cloud computing environments. Sustain. Comput. Inform. Syst. 17, 9–24 (2018)

    Google Scholar 

  6. Alresheedi, S.S., Lu, S., Elaziz, M.A., Ewees, A.A.: Improved multiobjective salp swarm optimization for virtual machine placement in cloud computing. Hum. Centric Comput. Inf. Sci. 9(1), 15 (2019)

    Article  Google Scholar 

  7. López-Pires, F., Barán, B.: Many-objective virtual machine placement. J. Grid Comput. 15(2), 161–176 (2017)

    Article  Google Scholar 

  8. Ye, X., Yin, Y., Lan, L.: Energy-efficient many-objective virtual machine placement optimization in a cloud computing environment. IEEE Access 5, 16006–16020 (2017)

    Article  Google Scholar 

  9. Ngatchou, P., Zarei, A., El-Sharkawi, A.: Pareto multi objective optimization. In: Proceedings of the 13th International Conference on Intelligent Systems Application to Power Systems, pp. 84–91. IEEE (2005)

  10. Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A., et al.: Evolutionary Algorithms for Solving Multi-objective Problems, vol. 5. Springer, New York (2007)

    MATH  Google Scholar 

  11. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley, New York (2001)

    MATH  Google Scholar 

  12. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with Box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)

    Article  Google Scholar 

  13. Tian, Y., Cheng, R., Zhang, X., Su, Y., Jin, Y.: A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization. IEEE Trans. Evol. Comput. 23(2), 331–345 (2018)

    Article  Google Scholar 

  14. Qasim, S.Z., Ismail, M.A.: RODE: ranking-dominance-based algorithm for many-objective optimization with opposition-based differential evolution. Arab. J. Sci. Eng. 45(12), 10079–10096 (2020)

    Article  Google Scholar 

  15. Sun, M., Gu, W., Zhang, X., Shi, H., Zhang, W.: A matrix transformation algorithm for virtual machine placement in cloud. In: 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, pp. 1778–1783. IEEE (2013)

  16. Zhang, X., Tian, Y., Jin, Y.: A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2014)

    Article  Google Scholar 

  17. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2010)

    Article  Google Scholar 

  19. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution—an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)

    Article  Google Scholar 

  20. Gao, J., Li, H., Jiao, Y.-C.: Modified differential evolution for the integer programming problems. In: 2009 International Conference on Artificial Intelligence and Computational Intelligence, vol. 1, pp. 213–219. IEEE (2009)

  21. Datta, D., Figueira, J.R.: A real-integer-discrete-coded differential evolution. Appl. Soft Comput. 13(9), 3884–3893 (2013)

    Article  Google Scholar 

  22. Mahdavi, S., Rahnamayan, S., Mahdavi, A.: Majority voting for discrete population-based optimization algorithms. Soft Comput. 23(1), 1–18 (2019)

    Article  Google Scholar 

  23. Zhao, F., Zhao, L., Wang, L., Song, H.: An ensemble discrete differential evolution for the distributed blocking flowshop scheduling with minimizing makespan criterion. Expert Syst. Appl. 160, 113678 (2020)

    Article  Google Scholar 

  24. Miettinen, K.: Nonlinear Multiobjective Optimization, vol. 12. Springer, New York (2012)

    MATH  Google Scholar 

  25. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  26. Portella, G., Rodrigues, G.N., Nakano, E., Melo, A.C.: Statistical analysis of Amazon EC2 cloud pricing models. Concurr. Comput. Pract. Exp. 31(18), e4451 (2019)

    Article  Google Scholar 

  27. Tang, M., Pan, S.: A hybrid genetic algorithm for the energy-efficient virtual machine placement problem in data centers. Neural Process. Lett. 41(2), 211–221 (2015)

    Article  Google Scholar 

  28. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Gener. Comput. Syst. 28(5), 755–768 (2012)

    Article  Google Scholar 

  29. Donoso, Y., Fabregat, R., Solano, F., Marzo, J.-L., Barán, B.: Generalized multiobjective multitree model for dynamic multicast groups. In: IEEE International Conference on Communications, 2005. ICC 2005, 2005, vol. 1, pp. 148–152. IEEE (2005)

  30. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  31. Cheng, J., Yen, G.G., Zhang, G.: A many-objective evolutionary algorithm with enhanced mating and environmental selections. IEEE Trans. Evol. Comput. 19(4), 592–605 (2015)

    Article  Google Scholar 

  32. Mnasri, S., Nasri, N., Van den Bossche, A., Val, T.: Improved many-objective optimization algorithms for the 3D indoor deployment problem. Arab. J. Sci. Eng. 44(4), 3883–3904 (2019)

    Article  Google Scholar 

  33. Qasim, S.Z., Ismail, M.A.: MOSA/D: multi-operator evolutionary many-objective algorithm with self-adaptation of parameters based on decomposition. Evol. Intell. (2022). https://doi.org/10.1007/s12065-021-00698-4

    Article  Google Scholar 

  34. Wu, G., Mallipeddi, R., Suganthan, P.N.: Ensemble strategies for population-based optimization algorithms—a survey. Swarm Evol. Comput. 44, 695–711 (2019)

    Article  Google Scholar 

  35. Nebro, A.J., Durillo, J.J., Vergne, M.: Redesigning the jMetal multi-objective optimization framework. In: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1093–1100 (2015)

  36. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with Box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  37. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: International Conference on Parallel Problem Solving from Nature, pp. 832–842. Springer (2004)

  38. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7(Jan), 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the MoST (Ministry of Science and Technology) endowment and NED University Research Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Zaffar Qasim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasim, S.Z., Ismail, M.A. DOCEA/D: Dual-Operator-based Constrained many-objective Evolutionary Algorithm based on Decomposition. Cluster Comput 25, 4151–4169 (2022). https://doi.org/10.1007/s10586-022-03647-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03647-7

Keywords

Navigation