Skip to main content
Log in

Stochastic QoE-aware optimization of multisource multimedia content delivery for mobile cloud

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The increasing popularity of mobile video streaming in wireless networks has stimulated growing demands for efficient video streaming services. However, due to the time-varying throughput and user mobility, it is still difficult to provide high quality video services for mobile users. Our proposed optimization method considers key factors such as video quality, bitrate level, and quality variations to enhance quality of experience over wireless networks. The mobile network and device parameters are estimated in order to deliver the best quality video for the mobile user. We develop a rate adaptation algorithm using Lyapunov optimization for multi-source multimedia content delivery to minimize the video rate switches and provide higher video quality. The multi-source manager algorithm is developed to select the best stream based on the path quality for each path. The node joining and cluster head election mechanism update the node information. As the proposed approach selects the optimal path, it also achieves fairness and stability among clients. The quality of experience feature metrics like bitrate level, rebuffering events, and bitrate switch frequency are employed to assess video quality. We also employ objective video quality assessment methods like VQM, MS-SSIM, and SSIMplus for video quality measurement closer to human visual assessment. Numerical results show the effectiveness of the proposed method as compared to the existing state-of-the-art methods in providing quality of experience and bandwidth utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, Accessed on Mar. 2018, http://www.cisco.com/c/en/us/solutions/collateral/serviceprovider/visual-networking-index-vni/mobile-white-paper-c11-520862.html (2016)

  2. Liu, B., Bestavros, A., Du, D.-Z., Wang, J.: Wireless Algorithms, Systems, and Applications. Springer, Boston (2018)

    Google Scholar 

  3. Smith, K.R., Liu, H., Hsieh, L.-T., de Foy, X., Gazda, R.: Wireless adaptive video streaming with edge cloud. Wirel. Commun. Mob. Comput. 2018, 1–13 (2018)

    Article  Google Scholar 

  4. Haghighi, A.A., Shahbazpanahi, S., Shah Heydari, S.: Stochastic QoE-aware optimization in cloud-based content delivery networks. IEEE Access. 6, 32662–32672 (2018)

    Article  Google Scholar 

  5. Collins, K., Muntean, G.-M., Mangold, S.: Evaluation of dual transceiver approaches for scalable WLAN communications: Exploring the wireless capacity in entertainment parks. In: IEEE Local Computer Network Conference. pp. 208–211. IEEE, Denver, CO (2010)

  6. Lee, M., Keum, B., Jeong, J.H., Shim, Y.S., Lee, H.S.: A software-based receiver running on a single DSP for terrestrial digital multimedia broadcasting. IEEE Trans. Consum. Electron. 54, 1894–1902 (2008)

    Article  Google Scholar 

  7. Aguayo, M., Bellido, L., Lentisco, C.M., Pastor, E.: DASH adaptation algorithm based on adaptive forgetting factor estimation. IEEE Trans. Multimed. 20, 1224–1232 (2018)

    Article  Google Scholar 

  8. Chang, H.-B., Rubin, I., Colonnese, S., Cuomo, F., Hadar, O.: Joint adaptive rate and scheduling for unicasting video streams in cellular wireless networks. IEEE Trans. Veh. Technol. 66, 8398–8412 (2017)

    Article  Google Scholar 

  9. Bentaleb, A., Begen, A.C., Zimmermann, R., Harous, S.: SDNHAS: an SDN-enabled architecture to optimize QoE in HTTP adaptive streaming. IEEE Trans. Multimed. 19, 2136–2151 (2017)

    Article  Google Scholar 

  10. Yuan, H., Wei, X., Yang, F., Xiao, J., Kwong, S.: Cooperative bargaining game-based multiuser bandwidth allocation for dynamic adaptive streaming over HTTP. IEEE Trans. Multimed. 20, 183–197 (2018)

    Article  Google Scholar 

  11. Van Ma, L., Park, J., Nam, J., Jang, J., Kim, J.: An efficient scheduling multimedia transcoding method for DASH streaming in cloud environment. Clust. Comput. 22, 1043–1053 (2019)

    Article  Google Scholar 

  12. Ning, Z., Xia, F., Kong, X., Chen, Z.: Social-oriented resource management in cloud-based mobile networks. IEEE Cloud Comput. 3, 24–31 (2016)

    Article  Google Scholar 

  13. Fiedler, M., Popescu, A., Yao, Y.: QoE-aware sustainable throughput for energy-efficient video streaming. In: 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom) (BDCloud-SocialCom-SustainCom). pp. 493–500. IEEE, Atlanta, GA, USA (2016)

  14. Fitzek, F.H.P., Reisslein, M.: A prefetching protocol for continuous media streaming in wireless environments. IEEE J. Sel. Areas Commun. 19, 2015–2028 (2001)

    Article  Google Scholar 

  15. Li, Q., vanderSchaar, M.: Providing adaptive QoS to layered video over wireless local area networks through real-time retry limit adaptation. IEEE Trans. Multimed. 6, 278–290 (2004)

    Article  Google Scholar 

  16. Cha, Kyung-Ae: Content complexity adaptation for MPEG-4 audio-visual scene. IEEE Trans. Consum. Electron. 50, 760–765 (2004)

    Article  Google Scholar 

  17. Cao, Y., Xu, C., Guan, J., Zhang, H.: Qos-driven SCTP-based multimedia delivery over heterogeneous wireless networks. Sci. China Inf. Sci. 57, 1–10 (2014)

    Google Scholar 

  18. Duraimurugan, S., Jayarin, P.J.: Maximizing quality of multimedia streaming services in heterogeneous wireless networks using optimal multi-server technique. Clust. Comput. (2018). https://doi.org/10.1007/s10586-018-1797-8

    Article  Google Scholar 

  19. Wang, X., Kwon, T., Choi, Y., Wang, H., Liu, J.: Cloud-assisted adaptive video streaming and social-aware video prefetching for mobile users. IEEE Wirel. Commun. 20(3), 72–79 (2013)

    Article  Google Scholar 

  20. Lai, C.-F., Wang, H., Chao, H.-C., Nan, G.: A network and device aware QoS approach for cloud-based mobile streaming. IEEE Trans. Multimed. 15, 747–757 (2013)

    Article  Google Scholar 

  21. Zhu, Zuqing, Li, Suoheng, Chen, Xiaoliang: Design QoS-aware multi-path provisioning strategies for efficient cloud-assisted SVC video streaming to heterogeneous clients. IEEE Trans. Multimed. 15, 758–768 (2013)

    Article  Google Scholar 

  22. Sardis, F., Mapp, G., Loo, J., Aiash, M., Vinel, A.: On the investigation of cloud-based mobile media environments with service-populating and QoS-aware mechanisms. IEEE Trans. Multimed. 15, 769–777 (2013)

    Article  Google Scholar 

  23. Zhang, P., Yan, Z.: A QoS-aware system for mobile cloud computing. In: 2011 IEEE International Conference on Cloud Computing and Intelligence Systems. pp. 518–522. IEEE, Beijing, China (2011)

  24. Mok, R.K.P., Luo, X., Chan, E.W.W., Chang, R.K.C.: QDASH: A QoE-aware DASH system. 12

  25. Juluri, P., Tamarapalli, V., Medhi, D.: SARA: Segment aware rate adaptation algorithm for dynamic adaptive streaming over HTTP. In: 2015 IEEE International Conference on Communication Workshop (ICCW). pp. 1765–1770. IEEE, London, United Kingdom (2015)

  26. Ciubotaru, B., Muntean, C.H., Muntean, G.-M.: Mobile multi-source high quality multimedia delivery scheme. IEEE Trans. Broadcast. 63, 391–403 (2017)

    Article  Google Scholar 

  27. Lee, S.B., Smeaton, A.F., Muntean, G.M.: Quality-oriented multiple-source multimedia delivery over heterogeneous wireless networks. IEEE Trans. Broadcast. 57(2), 216–230 (2011)

    Article  Google Scholar 

  28. Nguyen, T., Zakhor, A.: Multiple sender distributed video streaming. IEEE Trans. Multimed. 6, 315–326 (2004)

    Article  Google Scholar 

  29. Baccarelli, E., Vinueza Naranjo, P.G., Shojafar, M., Scarpiniti, M.: Q *: energy and delay-efficient dynamic queue management in TCP/IP virtualized data centers. Comput. Commun. 102, 89–106 (2017)

    Article  Google Scholar 

  30. Muntean, G.-M., Perry, P., Murphy, L.: A new adaptive multimedia streaming system for All-IP multi-service networks. IEEE Trans. Broadcast. 50, 1–10 (2004)

    Article  Google Scholar 

  31. Imani, M., Ghoreishi, S.F., Braga-Neto, U.M.: Bayesian Control of Large MDPs with Unknown Dynamics in Data-Poor Environments. 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada. 11

  32. Fiedler, M., Hossfeld, T., Tran-Gia, P.: A generic quantitative relationship between quality of experience and quality of service. IEEE Netw. 24, 36–41 (2010)

    Article  Google Scholar 

  33. Rodriguez, D., Abrahao, J., Begazo, D., Rosa, R., Bressan, G.: Quality metric to assess video streaming service over TCP considering temporal location of pauses. IEEE Trans. Consum. Electron. 58, 985–992 (2012)

    Article  Google Scholar 

  34. Maia, O.B., Yehia, H.C., de Errico, L.: A concise review of the quality of experience assessment for video streaming. Comput. Commun. 57, 1–12 (2015)

    Article  Google Scholar 

  35. Chikkerur, S., Sundaram, V., Reisslein, M., Karam, L.J.: Objective video quality assessment methods: a classification, review, and performance comparison. IEEE Trans. Broadcast. 57, 165–182 (2011)

    Article  Google Scholar 

  36. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image Quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  37. Seshadrinathan, K., Bovik, A.C.: Motion tuned spatio-temporal quality assessment of natural videos. IEEE Trans. Image Process. 19, 335–350 (2010)

    Article  MathSciNet  Google Scholar 

  38. Rehman, A., Zeng, K., Wang, Z.: Display device-adapted video quality-of-experience assessment. In: Rogowitz, B.E., Pappas, T.N., and de Ridder, H. (eds.) Human vision and electronic imaging. p. 939406. San Francisco, California, United States (2015)

  39. Rosario, D., Costa, R., Santos, A., Braun, T., Cerqueira, E.: QoE-aware multiple path video transmission for wireless multimedia sensor networks. anais do XXXI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC), At Brasilia, Volume: 31. 15 (2013)

  40. Ciubotaru, B., Muntean, G.-M.: SASHA—a quality-oriented handover algorithm for multimedia content delivery to mobile users. IEEE Trans. Broadcast. 55, 437–450 (2009)

    Article  Google Scholar 

  41. Michael J. Neely: Stochastic Network Optimization with Application to Communication and Queueing Systems Synthesis Lectures on Communication Networks. (2010)

  42. FFmpeg, Accessed January 2019, [Online]. Available: https://www.ffmpeg.org/

  43. Network Simulator NS-2, Accessed April 2018, [Online]. https://www.isi.edu/nsnam/ns/.

  44. Riiser, H., Vigmostad, P., Griwodz, C., Halvorsen, P.: Commute Path Bandwidth Traces from 3G Networks: Analysis and Applications. MMSys’13, February 26–March 1, 2013, Oslo, Norway. 5

  45. Duanmu, Z., Rehman, A., Wang, Z.: A quality-of-experience database for adaptive Video streaming. IEEE Trans. Broadcast. 64, 474–487 (2018)

    Article  Google Scholar 

  46. Jiang, J., Sekar, V., Zhang, H.: Improving fairness, efficiency, and stability in HTTP-based adaptive video streaming with festive. IEEE/ACM Trans. Netw. 22, 326–340 (2014)

    Article  Google Scholar 

  47. Li, Z., Zhu, X., Gahm, J., Pan, R., Hu, H., Begen, A.C., Oran, D.: Probe and adapt: rate adaptation for HTTP video streaming at scale. IEEE J. Select. Areas Commun. 32, 719–733 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Saleem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 1:

For user iN, according to Eq. (15), we can write the following inequality.

$$Z_{i} \left( {t + 1} \right) = max\left[ {Z_{i} \left( t \right) - AB_{est} \left( t \right) , 0} \right] + C^{k} \left( t \right)$$
(25)
$$Z_{i} \left( {t + 1} \right) - Z_{i} \left( t \right) \ge C^{k} \left( t \right) - AB_{est} \left( t \right)$$
(26)

Take the sum of the inequality over t ∈ {0,….,T}, and write new Eq. (27),

$$\frac{{Z_{i} \left( T \right)}}{T} - \frac{{Z_{i} \left( 0 \right)}}{T} + \frac{1}{T}\mathop \sum \limits_{t = 0}^{T} AB_{est} \left( t \right) \ge \frac{1}{T}\mathop \sum \limits_{t = 0}^{T} C^{k} \left( t \right)$$
(27)
$$Z_{i} \left( 0 \right) = 0$$

We take the expectation and limit of t in Eq. (27). We have inequality in Eq. (28).

$$\mathop {\lim }\limits_{T \to \infty } \frac{{{\mathbb{E}}\left\{ {Z_{i} \left( T \right)} \right\}}}{T} + \mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\mathop \sum \limits_{t = 0}^{T} AB_{est} \left( t \right) \ge \mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\mathop \sum \limits_{t = 0}^{T} C^{k} \left( t \right)$$
(28)

It the queue Zi(T) is mean rate stable, the Eq. (29) will be:

$$\mathop {\lim }\limits_{T \to \infty } \frac{{\left\{ {Z_{i} \left( T \right)} \right\}}}{T} = 0$$
(29)

Considering the inequality in Eq. (28) the constraint

Cs(t) ≤ ABest is satisfied. Hence the Lemma 1 is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, M., Saleem, Y. & Hayat, M.F. Stochastic QoE-aware optimization of multisource multimedia content delivery for mobile cloud. Cluster Comput 23, 1381–1396 (2020). https://doi.org/10.1007/s10586-019-03007-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-019-03007-y

Keywords

Navigation