Skip to main content
Log in

Sparse multiband signal spectrum sensing with asynchronous coprime sampling

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Cognitive radio requires spectrum sensing over a broad frequency band and leads to a high sampling rate. In this paper, we propose an asynchronous coprime sampling technique for capturing and reconstructing of sparse multiband signals that occupy a small part of a given broad frequency band. The band locations of signal are not known a priori. In this proposed approach, we use a sub-Nyquist sampling rate by exploiting a low-dimensional representation of the original high-dimensional signal. A common input sparse multiband signal is digitized using a pair of uniform samplers, which are (not necessarily synchronously) clocked at coprime sampling rates. The captured samples are then re-sequenced and the multi-coset signal processing algorithm is employed. We derive the system model in the frequency domain, where the phase mismatch is compensated. Compared to the conventional multi-coset sampling, the proposed approach needs fewer samplers and does not require synchronous clock phase. Simulation results are provided to demonstrate the feasibility and effectiveness of the proposed asynchronous coprime sampling for sparse multiband signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mitola, J.: Cognitive radio for flexible mobile multimedia communications. In: Proceedings on (MoMuC’99) IEEE International Mobile Multimedia Communication Workshop, pp. 3–10 (1999)

  2. McHenry, M.: NSF spectrum occupancy measurements project summary. Shared Spectrum Co., Vienna (2005)

    Google Scholar 

  3. Jiang, J., Sun, H., Baglee, D., Poor, V.: Achieving autonomous compressive spectrum sensing for cognitive radios. IEEE Trans. Veh. Technol. 65(3), 1281–1291 (2016)

    Article  Google Scholar 

  4. Clemencio, F.M.C., Loureiro, C.F.M., Correia, C.M.B.: An easy procedure for calibrating data acquisition systems using interleaving. IEEE Trans. Nucl. Sci. 54(4), 1227–1231 (2007)

    Article  Google Scholar 

  5. Ivchenko, V.G., Kalashnikov, A.N., Challis, R.E., Hayes-Gill, B.R.: High-speed digitizing of repetitive waveforms using accurate interleaved sampling. IEEE Trans. Instrum. Meas. 56(4), 1322–1328 (2007)

    Article  Google Scholar 

  6. Donoho, D.: Compressed sensing. IEEE Trans. Inform. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  7. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  8. Duarte, M.F., Baraniuk, R.G.: Spectral compressive sensing. Appl. Comput. Harmonic Anal. 35(1), 111–129 (2013)

    Article  MathSciNet  Google Scholar 

  9. Shi, G., Lin, J., Chen, X., Qi, F., Liu, D., Zhang, L.: UWB echo signal detection with ultra-low rate sampling based on compressed sensing. IEEE Trans. Circuits Syst. II 55(4), 379–383 (2008)

    Article  Google Scholar 

  10. Kirolos, S., Laska, J., Wakin, M., Duarte, M., Baron, D., Ragheb, T., Massoud, Y., Baraniuk, R.: Analog-to-information conversion via random demodulation. In: Proceedings on IEEE Dallas Circuits System Workshop (DCAS), Dallas, TX, pp. 71–74 (2006)

  11. Tropp, J.A., Laska, J.N., Duarte, M.F., Romberg, J.K., Baraniuk, R.G.: Beyond Nyquist: efficient sampling of sparse bandlimited signals. IEEE Trans. Inform. Theory 56(1), 520–544 (2010)

    Article  MathSciNet  Google Scholar 

  12. Mangia, M., Rovatti, R., Setti, G.: Rakeness in the design of analog-to-information conversion of sparse and localized signals. IEEE Trans. Circuits Syst. I 59(5), 1001–1014 (2012)

    Article  MathSciNet  Google Scholar 

  13. Mishali, M., Eldar, Y.C.: From theory to practice: sub-Nyquist sampling of sparse wideband analog signals. IEEE J. Sel. Top. Signal Process. 4(2), 375–391 (2010)

    Article  Google Scholar 

  14. Mishali, M., Eldar, Y.C., Dounaevsky, O., Shoshan, E.: Xampling: analog to digital at sub-Nyquist rates. IET Circuits Devices Syst. 5(1), 8–20 (2011)

    Article  Google Scholar 

  15. Haque, T., Yazicigil, R.T., Pan, K.J.L., Wright, J., Kinget, P.R.: Theory and design of a quadrature analog-to-information converter for energy-efficient wideband spectrum sensing. IEEE Trans. Circuits Syst. I 62(2), 527–535 (2015)

    Article  Google Scholar 

  16. Zhao, Y., Hu, Y.H., Wang, H.: Enhanced random equivalent sampling based on compressed sensing. IEEE Trans. Instrum. Meas. 61(3), 579–586 (2012)

    Article  Google Scholar 

  17. Zhao, Y., Hu, Y.H., Liu, J.: Random triggering-based sub-Nyquist sampling system for sparse multiband signal. IEEE Trans. Instrum. Meas. 66(7), 1789–1797 (2017)

    Article  Google Scholar 

  18. Bai, L., Roy, S.: Compressive spectrum sensing using a bandpass sampling architecture. IEEE J. Emerg. Sel. Top. Circuits Syst. 2(3), 433–442 (2012)

    Article  Google Scholar 

  19. Fleyer, M., Linden, A., Horowitz, M., Rosenthal, A.: Multirate synchronous sampling of sparse multiband signals. IEEE Trans. Signal Process. 58(3), 1144–1156 (2010)

    Article  MathSciNet  Google Scholar 

  20. Tzou, N., Bhatta, D., Muldrey Jr., B., Moon, T., Wang, X., Choi, H., Chatterjee, A.: Low cost sparse multiband signal characterization using asynchronous multi-rate sampling: algorithms and hardware. J. Electron. Test. 31(1), 85–98 (2015)

    Article  Google Scholar 

  21. Sun, H., Chiu, W.Y., Jiang, J., Nallanathan, A., Poor, H.V.: Wideband spectrum sensing with sub-Nyquist sampling in cognitive radios. IEEE Trans. Signal Process. 60(11), 6068–6073 (2012)

    Article  MathSciNet  Google Scholar 

  22. Venkataramani, R., Bresler, Y.: Optimal sub-Nyquist nonuniform sampling and reconstruction for multiband signals. IEEE Trans. Signal Process. 49(10), 2301–2313 (2001)

    Article  Google Scholar 

  23. Krieger, J., Kochman, Y., Wornell, G.: Design and analysis of multi-coset arrays. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3781–3785 (2013)

  24. Weng, Z., Djuric, P.M.: A search-free DOA estimation algorithm for coprime arrays. Digit. Signal Process. 24(1), 27–33 (2014)

    Article  Google Scholar 

  25. Vaidyanathan, P.P., Pal, P.: Sparse sensing with co-prime samplers and arrays. IEEE Trans. Signal Process. 59(2), 573–586 (2011)

    Article  MathSciNet  Google Scholar 

  26. Scharf, L.L.: Statistical Signal Processing: Detection, Estimation, and Time Series Analysis. Addison-Wesley Publishing Co., Reading (1991)

    MATH  Google Scholar 

  27. Mishali, M., Eldar, Y.C.: Blind multiband signal reconstruction: compressed sensing for analog signal. IEEE Trans. Signal Process. 57(3), 993–1009 (2009)

    Article  MathSciNet  Google Scholar 

  28. Yousif, A.S., Haslett, J.W.: A fine resolution TDC architecture for next generation PET imaging. IEEE Trans. Nucl. Sci. 54(5), 1574–1582 (2007)

    Article  Google Scholar 

  29. Bresler, Y.: Spectrum-blind sampling and compressive sensing for continuous-index signals. In: Information Theory and Applications Workshop IEEE, pp. 547–554 (2008)

  30. Abdulhay, E., Mohammed, M.A., Ibrahim, D.A., Arunkumar, N., Venkatraman, V.: Computer aided solution for automatic segmenting and measurements of blood leucocytes using static microscope images. J. Med. Syst. (2018). https://doi.org/10.1007/s10916-018-0912-y

    Article  Google Scholar 

  31. Liu, C., Arunkumar, N.: Risk prediction and evaluation of transnational transmission of financial crisis based on complex network. Clust. Comput. (2018). https://doi.org/10.1007/s10586-018-1870-3

    Article  Google Scholar 

  32. Arunkumar, N., Kumar, K.R., Venkataraman, V.: Automatic detection of epileptic seizures using new entropy measures. J. Med. Imaging Health Info. 6(3), 724–730 (2016)

    Article  Google Scholar 

  33. Stephygraph, L.R., Arunkumar, N.: Brain-actuated wireless mobile robot control through an adaptive human-machine interface. Adv. Intell. Syst. Comput. 397, 537–549 (2016)

    Google Scholar 

  34. Malarkodi, M.P., Arunkumar, N., Venkataraman, V.: Gabor wavelet based approach for face recognition. Int. J. Appl. Eng. Res. 8(15), 1831–1840 (2013)

    Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China (Grant No. 61671114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijiu Zhao.

Appendix 1

Appendix 1

1.1 Real-valued signals

In this Appendix, we present the modifications to (12) for real-valued signal reconstruction. The sparse multiband signal is required to be bandlimited to ℱ ⊂ [−1/(2T), 1/(2T)]. The FT is conjugate symmetric for a real-valued signal x(t), its FT X(f) contains positive and negative frequencies. To form x(f), ℱ is still equally partitioned into L frequency intervals. Then, for odd and even values of L, ℱ0 is redefined by

$$\mathcal{F}_{0} = \left\{ {\begin{array}{*{20}c} {\left[ { - \frac{1}{2LT},\text{ }\frac{1}{2LT}} \right],\text{ }odd\text{ }L\text{ }} \\ {\left[ {0,\text{ }\frac{1}{LT}} \right],\text{ }even\text{ }L} \\ \end{array} } \right.$$
(31)

Define the set of L consecutive integers:

$$K = \left\{ {\begin{array}{*{20}c} {\left\{ { - \frac{L - 1}{2}, \ldots ,\frac{L - 1}{2}} \right\},\text{ }odd\text{ }L\text{ }} \\ {\left\{ { - \frac{L}{2} + 1, \ldots ,\frac{L}{2}} \right\},\text{ }even\text{ }L} \\ \end{array} } \right.$$
(32)

Consequently, x(f) is rewritten as

$${\mathbf{x}}_{l} \left( f \right) = X\left( {f + \frac{{K_{l} }}{LT}} \right),\text{ }f \in \mathcal{F}_{0} ,$$
(33)

where 0 ≤ l < L. The (i, l)th entry of Φ is given by

$${\varvec{\Phi}}_{{\text{ }i,l}} = \left\{ {\begin{array}{*{20}c} {\exp \left( {j2\pi c_{i}^{1} \frac{{K_{l} }}{L}} \right),\text{ }0 \le i < L_{2} \text{ }} \\ {\exp \left( {j2\pi \left( {c_{{i - L_{2} }}^{2} + \frac{\tau }{T}} \right)\frac{{K_{l} }}{L}} \right),\text{ }L_{2} \le i < M} \\ \end{array} } \right. .$$
(34)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Xiao, S. Sparse multiband signal spectrum sensing with asynchronous coprime sampling. Cluster Comput 22 (Suppl 2), 4693–4702 (2019). https://doi.org/10.1007/s10586-018-2297-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2297-6

Keywords

Navigation