Skip to main content
Log in

Stress-induced phosphoprotein 1: how does this co-chaperone influence the metastasis steps?

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

In several cancer types, metastasis is associated with poor prognosis, survival, and quality of life, representing a life risk more significant than the primary tumor itself. Metastasis is a multi-step process that spreads tumor cells from primary sites to surrounding or distant organs, originating secondary tumors. The interconnected steps that drive metastasis depend of several capabilities that enable cells to detach from the primary tumor, acquire motility and migrate through the basal membrane; invade and spread through the vascular system, and finally settle and originate a new tumor. Recently, stress-induced phosphoprotein 1 (STIP1) has emerged as a protein capable of driving tumor cells through these metastasis steps by mediating several biological processes and signaling pathways. This protein is mainly known for its function as a co-chaperone, acting as a scaffold for the interaction of its client heat-shock proteins Hsp70/90 chaperones; however, it is also known that STIP1 can act independently of chaperones to activate downstream phosphorylation pathways. The over-expression of STIP1 has been reported across various cancer types, identifying it as a potential biomarker for predicting patient prognosis and monitoring the progression of metastasis. Here, we present a discussion on how this co-chaperone mediates the initial steps of metastasis (cell adhesion loss, epithelial-to-mesenchymal transition, and angiogenesis), highlighting the biological mechanisms in which STIP1 plays a vital role, also presenting an overview of the current knowledge regarding its clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Guan X (2015) Cancer metastases: challenges and opportunities. Acta Pharm Sin B 5:402–418. https://doi.org/10.1016/j.apsb.2015.07.005

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang R, Zhu Y, Liu X et al (2019) The clinicopathological features and survival outcomes of patients with different metastatic sites in stage IV breast cancer. BMC Cancer 19. https://doi.org/10.1186/s12885-019-6311-z

  3. Mitra AK (2016) Ovarian Cancer Metastasis: A Unique Mechanism of Dissemination. In: Tumor Metastasis. InTech. https://doi.org/10.5772/64700

  4. Deng K, Yang C, Tan Q et al (2018) Sites of distant metastases and overall survival in ovarian cancer: a study of 1481 patients. Gynecol Oncol 150:460–465. https://doi.org/10.1016/j.ygyno.2018.06.022

    Article  PubMed  Google Scholar 

  5. Martin TA, Ye L, Lane J, Jiang WG (2013) Tissue invasion and metastasis: Molecular, biological and clinical perspectives, Seminars in Cancer Biology, Volume 35, S244-S275. https://doi.org/10.1016/j.semcancer.2015.03.008

  6. Schwarz K, Baindur-Hudson S, Blatch GL, Edkins AL (2023) Hsp70/Hsp90 organising protein (hop): coordinating much more than chaperones. In: Edkins AL, Blatch GL (eds) The networking of chaperones by co-chaperones. Subcellular biochemistry, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-031-14740-1_3

    Chapter  Google Scholar 

  7. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: Tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang S, Xiao H, Cao L (2021) Recent advances in heat shock proteins in cancer diagnosis, prognosis, metabolism and treatment. Biomed Pharmacotherapy 142(112074). https://doi.org/10.1016/j.biopha.2021.112074

  9. Wang J, You H, Qi J et al (2017) Autocrine and paracrine STIP1 signaling promote osteolytic bone metastasis in renal cell carcinoma. Oncotarget 8(10):17012–17026. https://doi.org/10.18632/oncotarget.15222

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huang L, Zhai E, Cai S et al (2018) Stress-inducible Protein-1 promotes metastasis of gastric cancer via Wnt/β-catenin signaling pathway. J Experimental Clin Cancer Res 37. https://doi.org/10.1186/s13046-018-0676-8

  11. da Fonseca ACC, Matias D, Geraldo LHM et al (2021) The multiple functions of the co-chaperone stress inducible protein 1. Cytokine Growth Factor Rev 57:73–84. https://doi.org/10.1016/j.cytogfr.2020.06.003

    Article  CAS  PubMed  Google Scholar 

  12. Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tomasello G, Armenia I, Molla G (2020) The protein Imager: a full-featured online molecular viewer interface with server-side HQ-rendering capabilities. Bioinformatics 36:2909–2911. https://doi.org/10.1093/bioinformatics/btaa009

    Article  CAS  PubMed  Google Scholar 

  14. Jing Y, Liang W, Liu J et al (2019) Stress-induced phosphoprotein 1 promotes pancreatic cancer progression through activation of the FAK/AKT/MMP signaling axis. Pathol Res Pract 215. https://doi.org/10.1016/j.prp.2019.152564

  15. Luo X, Liu Y, Ma S et al (2018) STIP1 is over-expressed in hepatocellular carcinoma and promotes the growth and migration of cancer cells. Gene 662:110–117. https://doi.org/10.1016/j.gene.2018.03.076

    Article  CAS  PubMed  Google Scholar 

  16. Nijkamp MM, Span PN, Hoogsteen IJ et al (2011) Expression of E-cadherin and vimentin correlates with metastasis formation in head and neck squamous cell carcinoma patients. Radiother Oncol 99:344–348. https://doi.org/10.1016/j.radonc.2011.05.066

    Article  CAS  PubMed  Google Scholar 

  17. de Lacerda TCS, Costa-Silva B, Giudice FS et al (2016) Prion protein binding to HOP modulates the migration and invasion of colorectal cancer cells. Clin Exp Metastasis 33:441–451. https://doi.org/10.1007/s10585-016-9788-8

    Article  CAS  PubMed  Google Scholar 

  18. Iglesia RP, Prado MB, Cruz L et al (2017) Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells. Stem Cell Res Ther 8. https://doi.org/10.1186/s13287-017-0518-1

  19. Santos Ramos F, Wons L, João Cavalli I, Ribeiro MSF E (2017) Epithelial-mesenchymal transition in cancer: an overview. Integr Cancer Sci Ther. 4https://doi.org/10.15761/icst.1000243

    Article  Google Scholar 

  20. Fife CM, Mccarroll JA, Kavallaris M et al (2014) Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol 171:5507–5523. https://doi.org/10.1111/bph.2014.171.issue-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Beckley SJ, Hunter MC, Kituyi SN et al (2020) STIP1/HOP regulates the actin cytoskeleton through interactions with actin and changes in actin-binding proteins cofilin and profilin. Int J Mol Sci 21. https://doi.org/10.3390/ijms21093152

  22. Willmer T, Contu L, Blatch GL, Edkins AL (2013) Knockdown of hop downregulates RhoC expression, and decreases pseudopodia formation and migration in cancer cell lines. Cancer Lett 328:252–260. https://doi.org/10.1016/j.canlet.2012.09.021

    Article  CAS  PubMed  Google Scholar 

  23. Guo X, Yan Z, Zhang G et al (2019) STIP1 regulates proliferation and migration of lung adenocarcinoma through JAK2/STAT3 signaling pathway. Cancer Manag Res 11:10061–10072. https://doi.org/10.2147/CMAR.S233758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin L, Wen J, Lin B et al (2021) Stress-induced phosphoprotein 1 facilitates breast cancer cell progression and indicates poor prognosis for breast cancer patients. Hum Cell 34:901–917. https://doi.org/10.1007/s13577-021-00507-1

    Article  CAS  PubMed  Google Scholar 

  25. Zeng YT, Liu XF, Yang WT, Zheng PS (2019) REX1 promotes EMT-induced cell metastasis by activating the JAK2/STAT3-signaling pathway by targeting SOCS1 in cervical cancer. Oncogene 38:6940–6957. https://doi.org/10.1038/s41388-019-0906-3

    Article  CAS  PubMed  Google Scholar 

  26. Xia YJ, Chen J, Liu G et al (2021) STIP1 knockdown suppresses colorectal cancer cell proliferation, migration and invasion by inhibiting STAT3 pathway. Chem Biol Interact 341. https://doi.org/10.1016/j.cbi.2021.109446

  27. Paduch R (2016) The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol 39:397–410. https://doi.org/10.1007/s13402-016-0281-9

    Article  CAS  Google Scholar 

  28. Quintero-Fabián S, Arreola R, Becerril-Villanueva E et al (2019) Role of Matrix metalloproteinases in Angiogenesis and Cancer. Front Oncol 9. https://doi.org/10.3389/fonc.2019.01370

  29. Li J, Sun X, Wang Z et al (2012) Regulation of vascular endothelial cell polarization and migration by HsP70/HsP90-organizing protein. PLoS ONE 7. https://doi.org/10.1371/journal.pone.0036389

  30. Sims JD, McCready J, Jay DG (2011) Extracellular heat shock protein (hsp)70 and Hsp90α assist in matrix metalloproteinase-2 activation and breast cancer cell migration and invasion. PLoS ONE 6. https://doi.org/10.1371/journal.pone.0018848

  31. Walsh N, Larkin AM, Swan N et al (2011) RNAi knockdown of hop (Hsp70/Hsp90 organising protein) decreases invasion via MMP-2 down regulation. Cancer Lett 306:180–189. https://doi.org/10.1016/j.canlet.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  32. da Fonseca ACC, Romão L, Amaral RF et al (2012) Microglial stress inducible protein 1 promotes proliferation and migration in human glioblastoma cells. Neuroscience 200:130–141. https://doi.org/10.1016/j.neuroscience.2011.10.025

    Article  CAS  PubMed  Google Scholar 

  33. Sun X, Cao N, Mu L, Cao W (2019) Stress induced phosphoprotein 1 promotes tumor growth and metastasis of melanoma via modulating JAK2/STAT3 pathway. Biomed Pharmacotherapy 116. https://doi.org/10.1016/j.biopha.2019.108962

  34. Lim S-C (2003) Role of COX-2, VEGF and cyclin D1 in mammary infiltrating duct carcinoma. Oncol Rep 10:1241–1249

    CAS  PubMed  Google Scholar 

  35. Luliani M, Simonetti S, Ribelli G et al (2020) Current and emerging biomarkers Predicting Bone Metastasis Development. Front Oncol 10. https://doi.org/10.3389/fonc.2020.00789

  36. Li R, Li P, Wang J, Liu J (2020) STIP1 down-regulation inhibits glycolysis by suppressing PKM2 and LDHA and inactivating the Wnt/β-catenin pathway in cervical carcinoma cells. Life Sci 258. https://doi.org/10.1016/j.lfs.2020.118190

  37. Zhang Z, Ren H, Yang L et al (2018) Aberrant expression of stress-induced phosphoprotein 1 in colorectal cancer and its clinicopathologic significance. Hum Pathol 79:135–143. https://doi.org/10.1016/j.humpath.2018.05.016

    Article  CAS  PubMed  Google Scholar 

  38. Krafft U, Tschirdewahn S, Hess J et al (2020) STIP1 tissue expression is Associated with Survival in Chemotherapy-treated bladder Cancer patients. Pathol Oncol Res 26:1243–1249. https://doi.org/10.1007/s12253-019-00689-y

    Article  CAS  PubMed  Google Scholar 

  39. Wu R, Liu F, Peng P et al (2018) Tumor stress-induced phosphoprotein 1 as a prognostic biomarker for breast cancer. Ann Transl Med 6:302–302. https://doi.org/10.21037/atm.2018.06.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pimienta G, Herbert KM, Regan L (2011) A compound that inhibits the HOP-Hsp90 complex formation and has unique killing effects in breast cancer cell lines. Mol Pharm 8:2252–2261. https://doi.org/10.1021/mp200346y

    Article  CAS  PubMed  Google Scholar 

  41. Cho H, Kim S, Shin HY et al (2014) Expression of stress-induced phosphoprotein1 (STIP1) is associated with tumor progression and poor prognosis in epithelial ovarian cancer. Genes Chromosomes Cancer 53:277–288. https://doi.org/10.1002/gcc.22136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chao A, Lai CH, Tsai CL et al (2013) Tumor stress-Induced Phosphoprotein1 (STIP1) as a Prognostic Biomarker in Ovarian Cancer. PLoS ONE 8. https://doi.org/10.1371/journal.pone.0057084

  43. Yuan MH, Zhou RS, She B et al (2014) Expression and clinical significance of STIP1 in papillary thyroid carcinoma. Tumor Biology 35:2391–2395. https://doi.org/10.1007/s13277-013-1316-8

    Article  CAS  PubMed  Google Scholar 

  44. Fouad EM, Harb OA, Salem RA et al (2018) The expression of FOXE-1 and STIP-1 in papillary thyroid carcinoma and their relationship with patient prognosis. Iran J Pathol 13(2):256–271

    Article  Google Scholar 

  45. Wang WH, Chen SK, Huang HC, Juan HF (2021) Proteomic analysis reveals that metformin suppresses PSMD2, STIP1, and CAP1 for preventing gastric Cancer AGS Cell Proliferation and Migration. ACS Omega 6:14208–14219. https://doi.org/10.1021/acsomega.1c00894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ma XL, Tang WG, Yang MJ et al (2020) Serum STIP1, a Novel Indicator for Microvascular Invasion, predicts outcomes and treatment response in Hepatocellular Carcinoma. Front Oncol 10. https://doi.org/10.3389/fonc.2020.00511

  47. Chen Z, Xu L, Su T et al (2017) Autocrine STIP1 signaling promotes tumor growth and is associated with disease outcome in hepatocellular carcinoma. Biochem Biophys Res Commun 493:365–372. https://doi.org/10.1016/j.bbrc.2017.09.016

    Article  CAS  PubMed  Google Scholar 

  48. Xu YW, Liu CT, Huang XY et al (2017) Serum autoantibodies against STIP1 as a potential biomarker in the diagnosis of esophageal squamous cell carcinoma. https://doi.org/10.1155/2017/5384091. Dis Markers 2017:

  49. Wang M, Liu F, Pan Y et al (2021) Tumor-associated autoantibodies in ESCC screening: Detecting prevalent early-stage malignancy or predicting future cancer risk? EBioMedicine 73. https://doi.org/10.1016/j.ebiom.2021.103674

  50. Wang JH, Gong C, Guo FJ et al (2020) Knockdown of STIP1 inhibits the invasion of CD133positive cancer stemlike cells of the osteosarcoma MG63 cell line via the PI3K/Akt and ERK1/2 pathways. Int J Mol Med 46:2251–2259. https://doi.org/10.3892/ijmm.2020.4764

    Article  CAS  PubMed  Google Scholar 

  51. Chatterjee S, Burns TF (2017) Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci 18. https://doi.org/10.3390/ijms18091978

  52. Wang TH, Chao A, Tsai CL et al (2010) Stress-induced Phosphoprotein 1 as a secreted biomarker for human ovarian Cancer promotes Cancer Cell Proliferation. Mol Cell Proteom 9. https://doi.org/10.1074/mcp.M110.000802

  53. Walsh N, O’donovan N, Kennedy S et al (2009) Identification of pancreatic cancer invasion-related proteins by proteomic analysis. Proteome Sci 7:3. https://doi.org/10.1186/1477-5956-7-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bhattacharya K, Picard D (2021) The Hsp70–Hsp90 go-between Hop/Stip1/Sti1 is a proteostatic switch and may be a drug target in cancer and neurodegeneration. Cell Mol Life Sci 78:7257–7273. https://doi.org/10.1007/s00018-021-03962-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ma XL, Tang WG, Yang MJ et al (2020) Serum STIP1, a Novel Indicator for Microvascular Invasion, predicts outcomes and treatment response in Hepatocellular Carcinoma. Front Oncol 10:511. https://doi.org/10.3389/fonc.2020.00511

    Article  PubMed  PubMed Central  Google Scholar 

  56. Padden J, Meggert DA, Bracht T et al (2014) Identification of Novel Biomarker candidates for the Immunohistochemical Diagnosis of Cholangiocellular Carcinoma. Mol Cell Proteom 13:10. https://doi.org/10.1074/mcp.M113.034942

    Article  CAS  Google Scholar 

  57. Yin H, Deng Z, Li X et al (2019) Down-regulation of STIP1 regulate apoptosis and invasion of glioma cells via TRAP1/AKT signaling pathway. Cancer Genet 237:1–9. https://doi.org/10.1016/j.cancergen.2019.05.006

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Process: 408730/2018-8

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the review conception and design. Literature search and data analysis was performed by Alexandre Luiz Korte de Azevedo. The first draft of the manuscript was written by Alexandre Luiz Korte de Azevedo, and all authors commented on the subsequent versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Enilze Maria de Souza Fonseca Ribeiro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Azevedo, A.L.K., Gomig, T. & Ribeiro, E.M.d.S.F. Stress-induced phosphoprotein 1: how does this co-chaperone influence the metastasis steps?. Clin Exp Metastasis (2024). https://doi.org/10.1007/s10585-024-10282-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10585-024-10282-6

Keywords

Navigation