Skip to main content

Advertisement

Log in

Myeloid derived suppressor cells and the release of micro-metastases from dormancy

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Metastasis is the primary cause of cancer mortality and an improved understanding of its pathology is critical to the development of novel therapeutic approaches. Mechanism-based therapeutic strategies require insight into the timing of tumor cell dissemination, seeding of distant organs, formation of occult lesions and critically, their release from dormancy. Due to imaging limitations, primary tumors can only be detected when they reach a relatively large size (e.g. > 1 cm3), which, based on our understanding of tumor evolution, occurs approximately 10 years and about 30 doubling times following tumor initiation. Genomic profiling of paired primary tumors and metastases has suggested that tumor seeding at secondary sites occurs early during tumor progression and frequently, years prior to clinical diagnosis. Following seeding, tumor cells may enter into and remain in a dormant state, and if they survive and are released from dormancy, they can proliferate into an overt lesion. The timeline of tumor initiation and metastatic dormancy is regulated by tumor interactions with its microenvironment, angiogenesis, and tumor-specific cytotoxic T-lymphocyte (CTL) responses. Therefore, a better understanding of the cellular interactions responsible for immune evasion and/or tumor cell release from dormancy would facilitate the development of therapeutics targeted against this critical part of tumor progression. The immunosuppressive mechanisms mediated by myeloid-derived suppressor cells (MDSCs) contribute to tumor progression and, we posit, promote tumor cell escape from CTL-associated dormancy. Thus, while clinical and translational research has demonstrated a role for MDSCs in facilitating tumor progression and metastasis through tumor escape from adoptive and innate immune responses (T-, natural killer and B-cell responses), few studies have considered the role of MDSCs in tumor release from dormancy. In this review, we discuss MDSC expansion, driven by tumor burden associated growth factor secretion and their role in tumor cell escape from dormancy, resulting in manifest metastases. Thus, the therapeutic strategies to inhibit MDSC expansion and function may provide an approach to delay metastatic relapse and prolong the survival of patients with advanced malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All authors agree with submission to Clinical and Experimental Metastasis.

References

  1. DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, Alteri R, Robbins AS, Jemal A (2014) Cancer treatment and survivorship statistics. CA Cancer J Clin 64(4):252–271. https://doi.org/10.3322/caac.21235

    Article  PubMed  Google Scholar 

  2. Jahanban-Esfahlan R, Seidi K, Manjili MH, Jahanban-Esfahlan A, Javaheri T, Zare P (2019) Tumor cell dormancy: threat or opportunity in the fight against cancer. Cancers (Basel). https://doi.org/10.3390/cancers11081207

    Article  Google Scholar 

  3. Yuhas JM, Tarleton AE (1978) Dormancy and spontaneous recurrence of human breast cancer in vitro. Cancer Res 38(11 Pt 1):3584–3589

    CAS  PubMed  Google Scholar 

  4. Hadfield G (1954) The dormant cancer cell. Br Med J 2(4888):607–610. https://doi.org/10.1136/bmj.2.4888.607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Willis R (1934) The spread of tumours in the human body. By Rupert A. Willis. M.D., B.S., D.Sc. (Melbourne), 1934 London: J. & A. Churchill. 25s. net. BJS Br J Surg 22(85):196–196. https://doi.org/10.1002/bjs.1800228544

    Article  Google Scholar 

  6. Romero I, Garrido F, Garcia-Lora AM (2014) Metastases in immune-mediated dormancy: a new opportunity for targeting cancer. Cancer Res 74(23):6750–6757. https://doi.org/10.1158/0008-5472.Can-14-2406

    Article  CAS  PubMed  Google Scholar 

  7. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58(1):49–59. https://doi.org/10.1007/s00262-008-0523-4

    Article  CAS  PubMed  Google Scholar 

  8. Wang L, Chang EW, Wong SC, Ong SM, Chong DQ, Ling KL (2013) Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins. J Immunol 190(2):794–804. https://doi.org/10.4049/jimmunol.1202088

    Article  CAS  PubMed  Google Scholar 

  9. Fredeau L, Bohelay G, Shourick J, Piver D, Guyot A, Schlageter MH, Caux F, Maubec E (2020) Paraneoplastic neutrophilic leukaemoid reaction in a patient with melanoma: association between tumour volume and leucocytosis. Br J Dermatol 183(3):579–580. https://doi.org/10.1111/bjd.19059

    Article  CAS  PubMed  Google Scholar 

  10. Hocking W, Goodman J, Golde D (1983) Granulocytosis associated with tumor cell production of colony-stimulating activity. Blood 61(3):600–603

    Article  CAS  PubMed  Google Scholar 

  11. Sieff CA (1987) Hematopoietic growth factors. J Clin Invest 79(6):1549–1557. https://doi.org/10.1172/JCI112988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lane TA, Ho AD, Bashey A, Peterson S, Young D, Law P (1999) Mobilization of blood-derived stem and progenitor cells in normal subjects by granulocyte-macrophage- and granulocyte-colony-stimulating factors. Transfusion 39(1):39–47. https://doi.org/10.1046/j.1537-2995.1999.39199116893.x

    Article  CAS  PubMed  Google Scholar 

  13. Slavin S, Strober S (1979) Induction of allograft tolerance after total lymphoid irradiation (TLI): development of suppressor cells of the mixed leukocyte reaction (MLR). J Immunol 123(2):942–946

    CAS  PubMed  Google Scholar 

  14. Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MR (1995) Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 1(1):95–103

    CAS  PubMed  Google Scholar 

  15. Dumitru CA, Moses K, Trellakis S, Lang S, Brandau S (2012) Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother 61(8):1155–1167. https://doi.org/10.1007/s00262-012-1294-5

    Article  CAS  PubMed  Google Scholar 

  16. Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R (2010) Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70(11):4335–4345. https://doi.org/10.1158/0008-5472.CAN-09-3767

    Article  CAS  PubMed  Google Scholar 

  17. Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, Ochoa AC (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69(4):1553–1560. https://doi.org/10.1158/0008-5472.CAN-08-1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev Cancer 13(10):739–752. https://doi.org/10.1038/nrc3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Can Res 61(12):4756–4760

    CAS  Google Scholar 

  20. Cole KE, Ly QP, Hollingsworth MA, Cox JL, Padussis JC, Foster JM, Vargas LM, Talmadge JE (2021) Human splenic myeloid derived suppressor cells: Phenotypic and clustering analysis. Cell Immunol. https://doi.org/10.1016/j.cellimm.2021.104317

    Article  PubMed  PubMed Central  Google Scholar 

  21. Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182(9):5693–5701. https://doi.org/10.4049/jimmunol.0900092

    Article  CAS  PubMed  Google Scholar 

  22. Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O’Neill A, Mier J, Ochoa AC (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65(8):3044–3048. https://doi.org/10.1158/0008-5472.CAN-04-4505

    Article  CAS  PubMed  Google Scholar 

  23. Khadge S, Sharp JG, McGuire TR, Thiele GM, Black P, DiRusso C, Cook L, Klassen LW, Talmadge JE (2018) Immune regulation and anti-cancer activity by lipid inflammatory mediators. Int Immunopharmacol 65:580–592. https://doi.org/10.1016/j.intimp.2018.10.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res 61(12):4756–4760

    CAS  PubMed  Google Scholar 

  25. Durante W, Johnson FK, Johnson RA (2007) Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clin Exp Pharmacol Physiol 34(9):906–911. https://doi.org/10.1111/j.1440-1681.2007.04638.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Youn JI, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI (2012) Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 91(1):167–181. https://doi.org/10.1189/jlb.0311177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Czystowska-Kuzmicz M, Sosnowska A, Nowis D, Ramji K, Szajnik M, Chlebowska-Tuz J, Wolinska E, Gaj P, Grazul M, Pilch Z, Zerrouqi A, Graczyk-Jarzynka A, Soroczynska K, Cierniak S, Koktysz R, Elishaev E, Gruca S, Stefanowicz A, Blaszczyk R, Borek B, Gzik A, Whiteside T, Golab J (2019) Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nat Commun 10(1):3000. https://doi.org/10.1038/s41467-019-10979-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T, Kogadeeva M, Picotti P, Meissner F, Mann M, Zamboni N, Sallusto F, Lanzavecchia A (2016) L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167(3):829-842.e813. https://doi.org/10.1016/j.cell.2016.09.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Raber P, Ochoa AC, Rodríguez PC (2012) Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives. Immunol Invest 41(6–7):614–634. https://doi.org/10.3109/08820139.2012.680634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64(16):5839–5849. https://doi.org/10.1158/0008-5472.Can-04-0465

    Article  CAS  PubMed  Google Scholar 

  31. Rodriguez PC, Quiceno DG, Ochoa AC (2006) l-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109(4):1568–1573. https://doi.org/10.1182/blood-2006-06-031856

    Article  CAS  PubMed  Google Scholar 

  32. Rodriguez PC, Zea AH, Culotta KS, Zabaleta J, Ochoa JB, Ochoa AC (2002) Regulation of T cell receptor CD3zeta chain expression by L-arginine. J Biol Chem 277(24):21123–21129. https://doi.org/10.1074/jbc.M110675200

    Article  CAS  PubMed  Google Scholar 

  33. Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P (2003) L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol 24(6):302–306. https://doi.org/10.1016/s1471-4906(03)00132-7

    Article  CAS  PubMed  Google Scholar 

  34. Idorn M, Køllgaard T, Kongsted P, Sengeløv L, Thor Straten P (2014) Correlation between frequencies of blood monocytic myeloid-derived suppressor cells, regulatory T cells and negative prognostic markers in patients with castration-resistant metastatic prostate cancer. Cancer Immunol Immunother 63(11):1177–1187. https://doi.org/10.1007/s00262-014-1591-2

    Article  CAS  PubMed  Google Scholar 

  35. Eiserich JP (2003) Nitric oxide: a simple free radical with complex chemistry and biology. Chemical probes in biology. Springer, Dordrecht, pp 1–19

    Google Scholar 

  36. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13(7):828–835. https://doi.org/10.1038/nm1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jaufmann J, Lelis FJN, Teschner AC, Fromm K, Rieber N, Hartl D, Beer-Hammer S (2020) Human monocytic myeloid-derived suppressor cells impair B-cell phenotype and function in vitro. Eur J Immunol 50(1):33–47. https://doi.org/10.1002/eji.201948240

    Article  CAS  PubMed  Google Scholar 

  38. Rastad JL, Green WR (2018) LP-BM5 retrovirus-expanded monocytic myeloid-derived suppressor cells alter B cell phenotype and function. ImmunoHorizons 2(3):87–106. https://doi.org/10.4049/immunohorizons.1700066

    Article  CAS  PubMed  Google Scholar 

  39. Kennedy DE, Knight KL (2015) Inhibition of B lymphopoiesis by adipocytes and IL-1-producing myeloid-derived suppressor cells. J Immunol 195(6):2666–2674. https://doi.org/10.4049/jimmunol.1500957

    Article  CAS  PubMed  Google Scholar 

  40. Elkabets M, Ribeiro VS, Dinarello CA, Ostrand-Rosenberg S, Di Santo JP, Apte RN, Vosshenrich CA (2010) IL-1β regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol 40(12):3347–3357. https://doi.org/10.1002/eji.201041037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tai LH, Alkayyal AA, Leslie AL, Sahi S, Bennett S, Tanese de Souza C, Baxter K, Angka L, Xu R, Kennedy MA, Auer RC (2018) Phosphodiesterase-5 inhibition reduces postoperative metastatic disease by targeting surgery-induced myeloid derived suppressor cell-dependent inhibition of Natural Killer cell cytotoxicity. Oncoimmunology 7(6):e1431082. https://doi.org/10.1080/2162402x.2018.1431082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Knier B, Hiltensperger M, Sie C, Aly L, Lepennetier G, Engleitner T, Garg G, Muschaweckh A, Mitsdörffer M, Koedel U, Höchst B, Knolle P, Gunzer M, Hemmer B, Rad R, Merkler D, Korn T (2018) Myeloid-derived suppressor cells control B cell accumulation in the central nervous system during autoimmunity. Nat Immunol 19(12):1341–1351. https://doi.org/10.1038/s41590-018-0237-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kennedy DE, Knight KL (2015) Inhibition of B lymphopoiesis by adipocytes and IL-1–producing myeloid-derived suppressor cells. J Immunol 195(6):2666–2674. https://doi.org/10.4049/jimmunol.1500957

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y, Schafer CC, Hough KP, Tousif S, Duncan SR, Kearney JF, Ponnazhagan S, Hsu HC, Deshane JS (2018) Myeloid-derived suppressor cells impair B cell responses in lung cancer through IL-7 and STAT5. J Immunol 201(1):278–295. https://doi.org/10.4049/jimmunol.1701069

    Article  CAS  PubMed  Google Scholar 

  45. Talmadge JE, Meyers KM, Prieur DJ, Starkey JR (1980) Role of NK cells in tumour growth and metastasis in beige mice. Nature 284(5757):622–624. https://doi.org/10.1038/284622a0

    Article  CAS  PubMed  Google Scholar 

  46. Li H, Han Y, Guo Q, Zhang M, Cao X (2009) Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol 182(1):240–249. https://doi.org/10.4049/jimmunol.182.1.240

    Article  CAS  PubMed  Google Scholar 

  47. Bellone G, Aste-Amezaga M, Trinchieri G, Rodeck U (1995) Regulation of NK cell functions by TGF-beta 1. J Immunol 155(3):1066–1073

    CAS  PubMed  Google Scholar 

  48. Castriconi R, Cantoni C, Della Chiesa M, Vitale M, Marcenaro E, Conte R, Biassoni R, Bottino C, Moretta L, Moretta A (2003) Transforming growth factor β1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci 100(7):4120–4125. https://doi.org/10.1073/pnas.0730640100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9(5):495–502. https://doi.org/10.1038/ni1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee J-C, Lee K-M, Kim D-W, Heo DS (2004) Elevated TGF-β1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 172(12):7335–7340. https://doi.org/10.4049/jimmunol.172.12.7335

    Article  CAS  PubMed  Google Scholar 

  51. Sun X, Sui Q, Zhang C, Tian Z, Zhang J (2013) Targeting blockage of STAT3 in hepatocellular carcinoma cells augments NK cell functions via reverse hepatocellular carcinoma-induced immune suppression. Mol Cancer Ther 12(12):2885–2896. https://doi.org/10.1158/1535-7163.Mct-12-1087

    Article  CAS  PubMed  Google Scholar 

  52. Sui Q, Zhang J, Sun X, Zhang C, Han Q, Tian Z (2014) NK cells are the crucial antitumor mediators when STAT3-mediated immunosuppression is blocked in hepatocellular carcinoma. J Immunol 193(4):2016–2023. https://doi.org/10.4049/jimmunol.1302389

    Article  CAS  PubMed  Google Scholar 

  53. Yaseen MM, Abuharfeil NM, Darmani H, Daoud A (2020) Mechanisms of immune suppression by myeloid-derived suppressor cells: the role of interleukin-10 as a key immunoregulatory cytokine. Open Biol 10(9):200111. https://doi.org/10.1098/rsob.200111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee W, Ko SY, Mohamed MS, Kenny HA, Lengyel E, Naora H (2019) Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum. J Exp Med 216(1):176–194. https://doi.org/10.1084/jem.20181170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437. https://doi.org/10.1038/nm.3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9(4):274–284. https://doi.org/10.1038/nrc2622

    Article  CAS  PubMed  Google Scholar 

  57. Paget S (1989) The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev 8(2):98–101

    CAS  PubMed  Google Scholar 

  58. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827. https://doi.org/10.1038/nature04186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hoggatt J, Pelus LM (2011) Many mechanisms mediating mobilization: an alliterative review. Curr Opin Hematol 18(4):231–238. https://doi.org/10.1097/MOH.0b013e3283477962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ (2003) Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 111(2):187–196. https://doi.org/10.1172/JCI15994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109(5):625–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Saito T, Usui N, Asai O, Dobashi N, Yano S, Osawa H, Takei Y, Takahara S, Ogasawara Y, Otsubo H, Yamaguchi Y, Minami J, Hoshi Y, Kataoka M, Aiba K (2007) Elevated serum levels of human matrix metalloproteinase-9 (MMP-9) during the induction of peripheral blood stem cell mobilization by granulocyte colony-stimulating factor (G-CSF). J Infect Chemother 13(6):426–428. https://doi.org/10.1007/s10156-007-0553-4

    Article  CAS  PubMed  Google Scholar 

  63. Xu M, Bruno E, Chao J, Huang S, Finazzi G, Fruchtman SM, Popat U, Prchal JT, Barosi G, Hoffman R, Consortium MPDR (2005) Constitutive mobilization of CD34+ cells into the peripheral blood in idiopathic myelofibrosis may be due to the action of a number of proteases. Blood 105(11):4508–4515. https://doi.org/10.1182/blood-2004-08-3238

    Article  CAS  PubMed  Google Scholar 

  64. Zeng ZS, Cohen AM, Guillem JG (1999) Loss of basement membrane type IV collagen is associated with increased expression of metalloproteinases 2 and 9 (MMP-2 and MMP-9) during human colorectal tumorigenesis. Carcinogenesis 20(5):749–755. https://doi.org/10.1093/carcin/20.5.749

    Article  CAS  PubMed  Google Scholar 

  65. Davies B, Waxman J, Wasan H, Abel P, Williams G, Krausz T, Neal D, Thomas D, Hanby A, Balkwill F (1993) Levels of matrix metalloproteases in bladder cancer correlate with tumor grade and invasion. Cancer Res 53(22):5365–5369

    CAS  PubMed  Google Scholar 

  66. Hamdy FC, Fadlon EJ, Cottam D, Lawry J, Thurrell W, Silcocks PB, Anderson JB, Williams JL, Rees RC (1994) Matrix metalloproteinase 9 expression in primary human prostatic adenocarcinoma and benign prostatic hyperplasia. Br J Cancer 69(1):177–182. https://doi.org/10.1038/bjc.1994.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jacob A, Prekeris R (2015) The regulation of MMP targeting to invadopodia during cancer metastasis. Front Cell Dev Biol 3:4. https://doi.org/10.3389/fcell.2015.00004

    Article  PubMed  PubMed Central  Google Scholar 

  68. Spiegel A, Brooks MW, Houshyar S, Reinhardt F, Ardolino M, Fessler E, Chen MB, Krall JA, DeCock J, Zervantonakis IK, Iannello A, Iwamoto Y, Cortez-Retamozo V, Kamm RD, Pittet MJ, Raulet DH, Weinberg RA (2016) Neutrophils suppress intraluminal NK cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discov 6(6):630–649. https://doi.org/10.1158/2159-8290.Cd-15-1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Horikawa N, Abiko K, Matsumura N, Hamanishi J, Baba T, Yamaguchi K, Yoshioka Y, Koshiyama M, Konishi I (2017) Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clin Cancer Res 23(2):587–599. https://doi.org/10.1158/1078-0432.CCR-16-0387

    Article  CAS  PubMed  Google Scholar 

  70. Karakhanova S, Link J, Heinrich M, Shevchenko I, Yang Y, Hassenpflug M, Bunge H, von Ahn K, Brecht R, Mathes A, Maier C, Umansky V, Werner J, Bazhin AV (2015) Characterization of myeloid leukocytes and soluble mediators in pancreatic cancer: importance of myeloid-derived suppressor cells. Oncoimmunology 4(4):e998519. https://doi.org/10.1080/2162402X.2014.998519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chun E, Lavoie S, Michaud M, Gallini CA, Kim J, Soucy G, Odze R, Glickman JN, Garrett WS (2015) CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function. Cell Rep 12(2):244–257. https://doi.org/10.1016/j.celrep.2015.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Obermajer N, Muthuswamy R, Odunsi K, Edwards RP, Kalinski P (2011) PGE(2)-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment. Cancer Res 71(24):7463–7470. https://doi.org/10.1158/0008-5472.Can-11-2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Piao Y, Liang J, Holmes L, Zurita AJ, Henry V, Heymach JV, de Groot JF (2012) Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro Oncol 14(11):1379–1392. https://doi.org/10.1093/neuonc/nos158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hao Z, Sadek I (2016) Sunitinib: the antiangiogenic effects and beyond. Onco Targets Ther 9:5495–5505. https://doi.org/10.2147/OTT.S112242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. van Hooren L, Georganaki M, Huang H, Mangsbo SM, Dimberg A (2016) Sunitinib enhances the antitumor responses of agonistic CD40-antibody by reducing MDSCs and synergistically improving endothelial activation and T-cell recruitment. Oncotarget 7(31):50277–50289. https://doi.org/10.18632/oncotarget.10364

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gottfried E, Kreutz M, Haffner S, Holler E, Iacobelli M, Andreesen R, Eissner G (2007) Differentiation of human tumour-associated dendritic cells into endothelial-like cells: an alternative pathway of tumour angiogenesis. Scand J Immunol 65(4):329–335

    Article  CAS  PubMed  Google Scholar 

  77. Conejo-Garcia JR, Benencia F, Courreges M-C, Kang E, Mohamed-Hadley A, Buckanovich RJ, Holtz DO, Jenkins A, Na H, Zhang L (2004) Tumor-infiltrating dendritic cell precursors recruited by a β-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med 10(9):950–958

    Article  CAS  PubMed  Google Scholar 

  78. Kuwana M, Okazaki Y, Kodama H, Satoh T, Kawakami Y, Ikeda Y (2006) Endothelial differentiation potential of human monocyte-derived multipotential cells. Stem cells 24(12):2733–2743

    Article  CAS  PubMed  Google Scholar 

  79. Cortez-Retamozo V, Etzrodt M, Newton A, Rauch PJ, Chudnovskiy A, Berger C, Ryan RJ, Iwamoto Y, Marinelli B, Gorbatov R, Forghani R, Novobrantseva TI, Koteliansky V, Figueiredo JL, Chen JW, Anderson DG, Nahrendorf M, Swirski FK, Weissleder R, Pittet MJ (2012) Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci USA 109(7):2491–2496. https://doi.org/10.1073/pnas.1113744109

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wu C, Ning H, Liu M, Lin J, Luo S, Zhu W, Xu J, Wu WC, Liang J, Shao CK, Ren J, Wei B, Cui J, Chen MS, Zheng L (2018) Spleen mediates a distinct hematopoietic progenitor response supporting tumor-promoting myelopoiesis. J Clin Invest 128(8):3425–3438. https://doi.org/10.1172/JCI97973

    Article  PubMed  PubMed Central  Google Scholar 

  81. Klein B, Stein M, Kuten A, Steiner M, Barshalom D, Robinson E, Gal D (1987) Splenomegaly and solitary spleen metastasis in solid tumors. Cancer 60(1):100–102. https://doi.org/10.1002/1097-0142(19870701)60:1%3c100::Aid-cncr2820600118%3e3.0.Co;2-9

    Article  CAS  PubMed  Google Scholar 

  82. Schlitt HJ, Schafers S, Deiwick A, Eckardt KU, Pietsch T, Ebell W, Nashan B, Ringe B, Wonigeit K, Pichlmayr R (1995) Extramedullary erythropoiesis in human liver grafts. Hepatology 21(3):689–696. https://doi.org/10.1002/hep.1840210314

    Article  CAS  PubMed  Google Scholar 

  83. Craig CEH, Quaglia A, Dhillon AP (2004) Extramedullary haematopoiesis in massive hepatic necrosis. Histopathology 45(5):518–525. https://doi.org/10.1111/j.1365-2559.2004.01970.x

    Article  CAS  PubMed  Google Scholar 

  84. Kiely JM, Silverstein MN (1969) Metastatic carcinoma simulating agnogenic myeloid metaplasia and myelofibrosis. Cancer 24(5):1041–1044. https://doi.org/10.1002/1097-0142(196911)24:5%3c1041::aid-cncr2820240526%3e3.0.co;2-c

    Article  CAS  PubMed  Google Scholar 

  85. Mohyuddin GR, Yacoub A (2016) Primary myelofibrosis presenting as extramedullary hematopoiesis in a transplanted liver graft: case report and review of the literature. Case Rep Hematol 2016:9515404. https://doi.org/10.1155/2016/9515404

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yablonski-Peretz T, Sulkes A, Polliack A, Weshler Z, Okon E, Catane R (1985) Secondary myelofibrosis with metastatic breast cancer simulating agnogenic myeloid metaplasia: report of a case and review of the literature. Med Pediatr Oncol 13(2):92–96. https://doi.org/10.1002/mpo.2950130210

    Article  CAS  PubMed  Google Scholar 

  87. Lee JM, Dedhar S, Kalluri R, Thompson EW (2006) The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172(7):973–981. https://doi.org/10.1083/jcb.200601018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S (2009) Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 11(4):R46. https://doi.org/10.1186/bcr2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kallergi G, Papadaki MA, Politaki E, Mavroudis D, Georgoulias V, Agelaki S (2011) Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Res 13(3):R59. https://doi.org/10.1186/bcr2896

    Article  PubMed  PubMed Central  Google Scholar 

  90. Raimondi C, Gradilone A, Naso G, Vincenzi B, Petracca A, Nicolazzo C, Palazzo A, Saltarelli R, Spremberg F, Cortesi E, Gazzaniga P (2011) Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Res Treat 130(2):449–455. https://doi.org/10.1007/s10549-011-1373-x

    Article  CAS  PubMed  Google Scholar 

  91. Boyer B, Thiery JP (1993) Epithelium-mesenchyme interconversion as example of epithelial plasticity. APMIS 101(1–6):257–268. https://doi.org/10.1111/j.1699-0463.1993.tb00109.x

    Article  CAS  PubMed  Google Scholar 

  92. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R, Kirchner T (2001) Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA 98(18):10356–10361. https://doi.org/10.1073/pnas.171610498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Huang RY-J, Guilford P, Thiery JP (2012) Early events in cell adhesion and polarity during epithelial-mesenchymal transition. J Cell Sci 125(19):4417–4422. https://doi.org/10.1242/jcs.099697

    Article  CAS  PubMed  Google Scholar 

  94. Beerling E, Seinstra D, de Wit E, Kester L, van der Velden D, Maynard C, Schäfer R, van Diest P, Voest E, van Oudenaarden A, Vrisekoop N, van Rheenen J (2016) Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Rep 14(10):2281–2288. https://doi.org/10.1016/j.celrep.2016.02.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ruiz P, Günthert U (1996) The cellular basis of metastasis. World J Urol 14(3):141–150. https://doi.org/10.1007/BF00186893

    Article  CAS  PubMed  Google Scholar 

  96. Morris VL, MacDonald IC, Koop S, Schmidt EE, Chambers AF, Groom AC (1993) Early interactions of cancer cells with the microvasculature in mouse liver and muscle during hematogenous metastasis: videomicroscopic analysis. Clin Exp Metastasis 11(5):377–390. https://doi.org/10.1007/bf00132981

    Article  CAS  PubMed  Google Scholar 

  97. Scherbarth S, Orr FW (1997) Intravital videomicroscopic evidence for regulation of metastasis by the hepatic microvasculature: effects of interleukin-1alpha on metastasis and the location of B16F1 melanoma cell arrest. Cancer Res 57(18):4105–4110

    CAS  PubMed  Google Scholar 

  98. Al-Mehdi AB, Tozawa K, Fisher AB, Shientag L, Lee A, Muschel RJ (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med 6(1):100–102. https://doi.org/10.1038/71429

    Article  CAS  PubMed  Google Scholar 

  99. Rusciano D, Burger MM (1992) Why do cancer cells metastasize into particular organs? BioEssays 14(3):185–194. https://doi.org/10.1002/bies.950140309

    Article  CAS  PubMed  Google Scholar 

  100. Weiss L (1992) Comments on hematogenous metastatic patterns in humans as revealed by autopsy. Clin Exp Metas 10(3):191–199. https://doi.org/10.1007/BF00132751

    Article  CAS  Google Scholar 

  101. Nicolson GL (1988) Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. Biochim Biophys Acta 948(2):175–224. https://doi.org/10.1016/0304-419x(88)90010-8

    Article  CAS  PubMed  Google Scholar 

  102. Nakajima M, Morikawa K, Fabra A, Bucana CD, Fidler IJ (1990) Influence of organ environment on extracellular matrix degradative activity and metastasis of human colon carcinoma cells. J Natl Cancer Inst 82(24):1890–1898. https://doi.org/10.1093/jnci/82.24.1890

    Article  CAS  PubMed  Google Scholar 

  103. Talmadge JE, Donkor M, Scholar E (2007) Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 26(3–4):373–400. https://doi.org/10.1007/s10555-007-9072-0

    Article  PubMed  Google Scholar 

  104. Kang Y, Pantel K (2013) Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell 23(5):573–581. https://doi.org/10.1016/j.ccr.2013.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ross JS, Slodkowska EA (2009) Circulating and disseminated tumor cells in the management of breast cancer. Am J Clin Pathol 132(2):237–245. https://doi.org/10.1309/ajcpji7deolkcs6f

    Article  CAS  PubMed  Google Scholar 

  106. Magbanua MJM, Rugo HS, Hauranieh L, Roy R, Scott JH, Lee JC, Hsiao F, Sosa EV, van’t Veer L, Esserman LJ, Park JW (2018) Genomic and expression profiling reveal molecular heterogeneity of disseminated tumor cells in bone marrow of early breast cancer. NPJ Breast Cancer 4(1):31. https://doi.org/10.1038/s41523-018-0083-5

    Article  PubMed  PubMed Central  Google Scholar 

  107. Dasgupta A, Lim AR, Ghajar CM (2017) Circulating and disseminated tumor cells: harbingers or initiators of metastasis? Mol Oncol 11(1):40–61. https://doi.org/10.1002/1878-0261.12022

    Article  PubMed  PubMed Central  Google Scholar 

  108. Deng G, Krishnakumar S, Powell AA, Zhang H, Mindrinos MN, Telli ML, Davis RW, Jeffrey SS (2014) Single cell mutational analysis of PIK3CA in circulating tumor cells and metastases in breast cancer reveals heterogeneity, discordance, and mutation persistence in cultured disseminated tumor cells from bone marrow. BMC Cancer 14:456. https://doi.org/10.1186/1471-2407-14-456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fidler IJ (1978) Tumor heterogeneity and the biology of cancer invasion and metastasis. Can Res 38(9):2651–2660

    CAS  Google Scholar 

  110. Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein TJ, Kaufmann M, Diebold J, Arnholdt H, Muller P, Bischoff J, Harich D, Schlimok G, Riethmuller G, Eils R, Klein CA (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA 100(13):7737–7742. https://doi.org/10.1073/pnas.1331931100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pantel K, Alix-Panabières C (2010) Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol Med 16(9):398–406. https://doi.org/10.1016/j.molmed.2010.07.001

    Article  PubMed  Google Scholar 

  112. Tarin D, Price JE, Kettlewell MG, Souter RG, Vass AC, Crossley B (1984) Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Res 44(8):3584–3592

    CAS  PubMed  Google Scholar 

  113. Fidler IJ (1970) Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2’-deoxyuridine. J Natl Cancer Inst 45(4):773–782

    CAS  PubMed  Google Scholar 

  114. Graf AH, Buchberger W, Langmayr H, Schmid KW (1988) Site preference of metastatic tumours of the brain. Virchows Arch A Pathol Anat Histopathol 412(5):493–498. https://doi.org/10.1007/bf00750584

    Article  CAS  PubMed  Google Scholar 

  115. Riihimäki M, Hemminki A, Fallah M, Thomsen H, Sundquist K, Sundquist J, Hemminki K (2014) Metastatic sites and survival in lung cancer. Lung Cancer 86(1):78–84. https://doi.org/10.1016/j.lungcan.2014.07.020

    Article  PubMed  Google Scholar 

  116. Sleeman J, Schmid A, Thiele W (2009) Tumor lymphatics. Semin Cancer Biol 19(5):285–297. https://doi.org/10.1016/j.semcancer.2009.05.005

    Article  CAS  PubMed  Google Scholar 

  117. Ward PM, Weiss L (1989) The relationship between lymphogenous and hematogenous metastasis in rats bearing the MT-100-TC mammary carcinoma. Clin Exp Metastasis 7(3):253–264. https://doi.org/10.1007/bf01753678

    Article  CAS  PubMed  Google Scholar 

  118. Crile G Jr, Isbister W, Deodhar SD (1971) Demonstration that large metastases in lymph nodes disseminate cancer cells to blood and lungs. Cancer 28(3):657. https://doi.org/10.1002/1097-0142(197109)28:3%3c657::aid-cncr2820280319%3e3.0.co;2-w

    Article  PubMed  Google Scholar 

  119. Ward PM, Weiss L (1989) Metachronous seeding of lymph node metastases in rats bearing the MT-100-TC mammary carcinoma: the effect of elective lymph node dissection. Breast Cancer Res Treat 14(3):315–320. https://doi.org/10.1007/bf01806303

    Article  CAS  PubMed  Google Scholar 

  120. Veronesi U, Marubini E, Mariani L, Valagussa P, Zucali R (1999) The dissection of internal mammary nodes does not improve the survival of breast cancer patients. 30-year results of a randomised trial. Eur J Cancer 35(9):1320–1325. https://doi.org/10.1016/s0959-8049(99)00133-1

    Article  CAS  PubMed  Google Scholar 

  121. Klein CA, Hölzel D (2006) Systemic cancer progression and tumor dormancy: mathematical models meet single cell genomics. Cell Cycle 5(16):1788–1798. https://doi.org/10.4161/cc.5.16.3097

    Article  CAS  PubMed  Google Scholar 

  122. Bartlett EK, Fetsch PA, Filie AC, Abati A, Steinberg SM, Wunderlich JR, White DE, Stephens DJ, Marincola FM, Rosenberg SA, Kammula US (2014) Human melanoma metastases demonstrate nonstochastic site-specific antigen heterogeneity that correlates with T-cell infiltration. Clin Cancer Res 20(10):2607–2616. https://doi.org/10.1158/1078-0432.CCR-13-2690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70(14):5649–5669. https://doi.org/10.1158/0008-5472.CAN-10-1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9(4):302–312. https://doi.org/10.1038/nrc2627

    Article  CAS  PubMed  Google Scholar 

  125. Weiss L (1983) Random and nonrandom processes in metastasis, and metastatic inefficiency. Invasion Metastasis 3(4):193–207

    CAS  PubMed  Google Scholar 

  126. Arnerlöv C, Emdin SO, Lundgren B, Roos G, Söderström J, Bjersing L, Norberg C, Angquist KA (1992) Breast carcinoma growth rate described by mammographic doubling time and S-phase fraction. Correlations to clinical and histopathologic factors in a screened population. Cancer 70(7):1928–1934. https://doi.org/10.1002/1097-0142(19921001)70:7%3c1928::aid-cncr2820700720%3e3.0.co;2-r

    Article  PubMed  Google Scholar 

  127. Klein CA, Blankenstein TJ, Schmidt-Kittler O, Petronio M, Polzer B, Stoecklein NH, Riethmuller G (2002) Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360(9334):683–689. https://doi.org/10.1016/S0140-6736(02)09838-0

    Article  CAS  PubMed  Google Scholar 

  128. Gruber IV, Hartkopf AD, Hahn M, Taran FA, Staebler A, Wallwiener D, Brucker SY, Hanke J, Fehm T (2016) Relationship between hematogenous tumor cell dissemination and cellular immunity in DCIS patients. Anticancer Res 36(5):2345–2351

    CAS  PubMed  Google Scholar 

  129. Sänger N, Effenberger KE, Riethdorf S, Van Haasteren V, Gauwerky J, Wiegratz I, Strebhardt K, Kaufmann M, Pantel K (2011) Disseminated tumor cells in the bone marrow of patients with ductal carcinoma in situ. Int J Cancer 129(10):2522–2526. https://doi.org/10.1002/ijc.25895

    Article  CAS  PubMed  Google Scholar 

  130. Hu Z, Curtis C (2020) Looking backward in time to define the chronology of metastasis. Nat Commun 11(1):3213. https://doi.org/10.1038/s41467-020-16995-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Alix-Panabieres C, Pantel K (2014) Challenges in circulating tumour cell research. Nat Rev Cancer 14(9):623–631. https://doi.org/10.1038/nrc3820

    Article  CAS  PubMed  Google Scholar 

  132. Gray JW (2003) Evidence emerges for early metastasis and parallel evolution of primary and metastatic tumors. Cancer Cell 4(1):4–6. https://doi.org/10.1016/s1535-6108(03)00167-3

    Article  CAS  PubMed  Google Scholar 

  133. Schardt JA, Meyer M, Hartmann CH, Schubert F, Schmidt-Kittler O, Fuhrmann C, Polzer B, Petronio M, Eils R, Klein CA (2005) Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell 8(3):227–239. https://doi.org/10.1016/j.ccr.2005.08.003

    Article  CAS  PubMed  Google Scholar 

  134. Weigelt B (2003) Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci 100(26):15901–15905. https://doi.org/10.1073/pnas.2634067100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Magrì A, Bardelli A (2019) Does early metastatic seeding occur in colorectal cancer? Nat Rev Gastroenterol Hepatol 16(11):651–653. https://doi.org/10.1038/s41575-019-0200-4

    Article  CAS  PubMed  Google Scholar 

  136. Jones S, Chen WD, Parmigiani G, Diehl F, Beerenwinkel N, Antal T, Traulsen A, Nowak MA, Siegel C, Velculescu VE, Kinzler KW, Vogelstein B, Willis J, Markowitz SD (2008) Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci U S A 105(11):4283–4288. https://doi.org/10.1073/pnas.0712345105

    Article  PubMed  PubMed Central  Google Scholar 

  137. Hu Z, Ding J, Ma Z, Sun R, Seoane JA, Scott Shaffer J, Suarez CJ, Berghoff AS, Cremolini C, Falcone A, Loupakis F, Birner P, Preusser M, Lenz HJ, Curtis C (2019) Quantitative evidence for early metastatic seeding in colorectal cancer. Nat Genet 51(7):1113–1122. https://doi.org/10.1038/s41588-019-0423-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Stoecklein NH, Hosch SB, Bezler M, Stern F, Hartmann CH, Vay C, Siegmund A, Scheunemann P, Schurr P, Knoefel WT, Verde PE, Reichelt U, Erbersdobler A, Grau R, Ullrich A, Izbicki JR, Klein CA (2008) Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell 13(5):441–453. https://doi.org/10.1016/j.ccr.2008.04.005

    Article  CAS  PubMed  Google Scholar 

  139. Birkbak NJ, McGranahan N (2020) Cancer genome evolutionary trajectories in metastasis. Cancer Cell 37(1):8–19. https://doi.org/10.1016/j.ccell.2019.12.004

    Article  CAS  PubMed  Google Scholar 

  140. Talmadge JE (2007) Clonal selection of metastasis within the life history of a tumor. Cancer Res 67(24):11471–11475. https://doi.org/10.1158/0008-5472.CAN-07-2496

    Article  CAS  PubMed  Google Scholar 

  141. Friberg S, Mattson S (1997) On the growth rates of human malignant tumors: implications for medical decision making. J Surg Oncol 65(4):284–297. https://doi.org/10.1002/(sici)1096-9098(199708)65:4%3c284::aid-jso11%3e3.0.co;2-2

    Article  CAS  PubMed  Google Scholar 

  142. Talmadge JE (2007) Clonal selection of metastasis within the life history of a tumor. Can Res 67(24):11471–11475. https://doi.org/10.1158/0008-5472.Can-07-2496

    Article  CAS  Google Scholar 

  143. Almog N, Henke V, Flores L, Hlatky L, Kung AL, Wright RD, Berger R, Hutchinson L, Naumov GN, Bender E (2006) Prolonged dormancy of human liposarcoma is associated with impaired tumor angiogenesis. FASEB J 20(7):947–949

    Article  CAS  PubMed  Google Scholar 

  144. Naumov GN, Bender E, Zurakowski D, Kang SY, Sampson D, Flynn E, Watnick RS, Straume O, Akslen LA, Folkman J, Almog N (2006) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98(5):316–325. https://doi.org/10.1093/jnci/djj068

    Article  PubMed  Google Scholar 

  145. Naumov GN, Akslen LA, Folkman J (2006) Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5(16):1779–1787

    Article  CAS  PubMed  Google Scholar 

  146. Price JE, Aukerman SL, Fidler IJ (1986) Evidence that the process of murine melanoma metastasis is sequential and selective and contains stochastic elements. Cancer Res 46(10):5172–5178

    CAS  PubMed  Google Scholar 

  147. Pantel K, Schlimok G, Braun S, Kutter D, Lindemann F, Schaller G, Funke I, Izbicki JR, Riethmuller G (1993) Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. JNCI J Nat Cancer Inst 85(17):1419–1424. https://doi.org/10.1093/jnci/85.17.1419

    Article  CAS  PubMed  Google Scholar 

  148. Pantel K, Izbicki JR, Angstwurm M, Braun S, Passlick B, Karg O, Thetter O, Riethmüller G (1993) Immunocytological detection of bone marrow micrometastasis in operable non-small cell lung cancer. Cancer Res 53(5):1027–1031

    CAS  PubMed  Google Scholar 

  149. Endo H, Inoue M (2019) Dormancy in cancer. Cancer Sci 110(2):474–480. https://doi.org/10.1111/cas.13917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pan H, Gray R, Braybrooke J, Davies C, Taylor C, McGale P, Peto R, Pritchard KI, Bergh J, Dowsett M, Hayes DF (2017) 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med 377(19):1836–1846. https://doi.org/10.1056/NEJMoa1701830

    Article  PubMed  PubMed Central  Google Scholar 

  151. Goddard ET, Bozic I, Riddell SR, Ghajar CM (2018) Dormant tumour cells, their niches and the influence of immunity. Nat Cell Biol 20(11):1240–1249. https://doi.org/10.1038/s41556-018-0214-0

    Article  CAS  PubMed  Google Scholar 

  152. Sidky YA, Borden EC (1987) Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses. Cancer Res 47(19):5155–5161

    CAS  PubMed  Google Scholar 

  153. Farrar JD, Katz KH, Windsor J, Thrush G, Scheuermann RH, Uhr JW, Street NE (1999) Cancer dormancy. VII. A regulatory role for CD8+ T cells and IFN-gamma in establishing and maintaining the tumor-dormant state. J Immunol 162(5):2842–2849

    CAS  PubMed  Google Scholar 

  154. Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21(2):137–148. https://doi.org/10.1016/j.immuni.2004.07.017

    Article  CAS  PubMed  Google Scholar 

  155. Wheelock EF, Weinhold KJ, Levich J (1981) The tumor dormant state. Adv Cancer Res 34:107–140. https://doi.org/10.1016/s0065-230x(08)60240-7

    Article  CAS  PubMed  Google Scholar 

  156. Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ, Smyth MJ, Schreiber RD (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450(7171):903–907. https://doi.org/10.1038/nature06309

    Article  CAS  PubMed  Google Scholar 

  157. Manjili MH (2014) The inherent premise of immunotherapy for cancer dormancy. Cancer Res 74(23):6745–6749. https://doi.org/10.1158/0008-5472.CAN-14-2440

    Article  CAS  PubMed  Google Scholar 

  158. Mahnke YD, Schwendemann J, Beckhove P, Schirrmacher V (2005) Maintenance of long-term tumour-specific T-cell memory by residual dormant tumour cells. Immunology 115(3):325–336. https://doi.org/10.1111/j.1365-2567.2005.02163.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wu X, Peng M, Huang B, Zhang H, Wang H, Huang B, Xue Z, Zhang L, Da Y, Yang D, Yao Z, Zhang R (2013) Immune microenvironment profiles of tumor immune equilibrium and immune escape states of mouse sarcoma. Cancer Lett 340(1):124–133. https://doi.org/10.1016/j.canlet.2013.07.038

    Article  CAS  PubMed  Google Scholar 

  160. Piras F, Colombari R, Minerba L, Murtas D, Floris C, Maxia C, Corbu A, Perra MT, Sirigu P (2005) The predictive value of CD8, CD4, CD68, and human leukocyte antigen-D-related cells in the prognosis of cutaneous malignant melanoma with vertical growth phase. Cancer 104(6):1246–1254. https://doi.org/10.1002/cncr.21283

    Article  CAS  PubMed  Google Scholar 

  161. Voest EE, Kenyon BM, O’Reilly MS, Truitt G, D’Amato RJ, Folkman J (1995) Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst 87(8):581–586. https://doi.org/10.1093/jnci/87.8.581

    Article  CAS  PubMed  Google Scholar 

  162. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79(2):315–328. https://doi.org/10.1016/0092-8674(94)90200-3

    Article  CAS  PubMed  Google Scholar 

  163. Bogden AE, Moreau JP, Eden PA (1997) Proliferative response of human and animal tumours to surgical wounding of normal tissues: onset, duration and inhibition. Br J Cancer 75(7):1021–1027. https://doi.org/10.1038/bjc.1997.175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sleeman JP (2012) The metastatic niche and stromal progression. Cancer Metastasis Rev 31(3–4):429–440. https://doi.org/10.1007/s10555-012-9373-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Fane M, Weeraratna AT (2020) How the ageing microenvironment influences tumour progression. Nat Rev Cancer 20(2):89–106. https://doi.org/10.1038/s41568-019-0222-9

    Article  CAS  PubMed  Google Scholar 

  166. Chen Q, Zhang XH, Massague J (2011) Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20(4):538–549. https://doi.org/10.1016/j.ccr.2011.08.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Doak GR, Schwertfeger KL, Wood DK (2018) Distant relations: macrophage functions in the metastatic niche. Trends Cancer 4(6):445–459. https://doi.org/10.1016/j.trecan.2018.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Albrengues J, Shields MA, Ng D, Park CG, Ambrico A, Poindexter ME, Upadhyay P, Uyeminami DL, Pommier A, Kuttner V, Bruzas E, Maiorino L, Bautista C, Carmona EM, Gimotty PA, Fearon DT, Chang K, Lyons SK, Pinkerton KE, Trotman LC, Goldberg MS, Yeh JT, Egeblad M (2018) Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. https://doi.org/10.1126/science.aao4227

    Article  PubMed  PubMed Central  Google Scholar 

  169. Sangaletti S, Tripodo C, Vitali C, Portararo P, Guarnotta C, Casalini P, Cappetti B, Miotti S, Pinciroli P, Fuligni F (2014) Defective stromal remodeling and neutrophil extracellular traps in lymphoid tissues favor the transition from autoimmunity to lymphoma. Cancer Discov 4(1):110–129

    Article  CAS  PubMed  Google Scholar 

  170. Rayes RF, Mouhanna JG, Nicolau I, Bourdeau F, Giannias B, Rousseau S, Quail D, Walsh L, Sangwan V, Bertos N, Cools-Lartigue J, Ferri LE, Spicer JD (2019) Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects. JCI Insight. https://doi.org/10.1172/jci.insight.128008

    Article  PubMed  PubMed Central  Google Scholar 

  171. Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S, Giannias B, Bourdeau F, Kubes P, Ferri L (2013) Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest 123(8):3446–3458. https://doi.org/10.1172/jci67484

    Article  CAS  PubMed Central  Google Scholar 

  172. Berger-Achituv S, Brinkmann V, Abu-Abed U, Kühn LI, Ben-Ezra J, Elhasid R, Zychlinsky A (2013) A proposed role for neutrophil extracellular traps in cancer immunoediting. Front Immunol 4:48

    Article  PubMed  PubMed Central  Google Scholar 

  173. Perego M, Tyurin VA, Tyurina YY, Yellets J, Nacarelli T, Lin C, Nefedova Y, Kossenkov A, Liu Q, Sreedhar S, Pass H, Roth J, Vogl T, Feldser D, Zhang R, Kagan VE, Gabrilovich DI (2020) Reactivation of dormant tumor cells by modified lipids derived from stress-activated neutrophils. Sci Transl Med 12(572):eabb5817. https://doi.org/10.1126/scitranslmed.abb5817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ (2013) The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138(2):105–115. https://doi.org/10.1111/imm.12036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Baschuk N, Rautela J, Parker BS (2015) Bone specific immunity and its impact on metastasis. Bonekey Rep 4:665. https://doi.org/10.1038/bonekey.2015.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Casimiro S, Guise TA, Chirgwin J (2009) The critical role of the bone microenvironment in cancer metastases. Mol Cell Endocrinol 310(1–2):71–81. https://doi.org/10.1016/j.mce.2009.07.004

    Article  CAS  PubMed  Google Scholar 

  177. Sceneay J, Smyth MJ, Möller A (2013) The pre-metastatic niche: finding common ground. Cancer Metastasis Rev 32(3–4):449–464. https://doi.org/10.1007/s10555-013-9420-1

    Article  CAS  PubMed  Google Scholar 

  178. Mitchell KG, Diao L, Karpinets T, Negrao MV, Tran HT, Parra ER, Corsini EM, Reuben A, Federico L, Bernatchez C, Dejima H, Francisco-Cruz A, Wang J, Antonoff MB, Vaporciyan AA, Swisher SG, Cascone T, Wistuba II, Heymach JV, Gibbons DL, Zhang J, Haymaker CL, Sepesi B (2020) Neutrophil expansion defines an immunoinhibitory peripheral and intratumoral inflammatory milieu in resected non-small cell lung cancer: a descriptive analysis of a prospectively immunoprofiled cohort. J Immunother Cancer. https://doi.org/10.1136/jitc-2019-000405

    Article  PubMed  PubMed Central  Google Scholar 

  179. Szczerba BM, Castro-Giner F, Vetter M, Krol I, Gkountela S, Landin J, Scheidmann MC, Donato C, Scherrer R, Singer J, Beisel C, Kurzeder C, Heinzelmann-Schwarz V, Rochlitz C, Weber WP, Beerenwinkel N, Aceto N (2019) Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566(7745):553–557. https://doi.org/10.1038/s41586-019-0915-y

    Article  CAS  PubMed  Google Scholar 

  180. Marymont JH Jr., Gross S (1963) Patterns of metastatic cancer in the spleen. Am J Clin Pathol 40:58–66. https://doi.org/10.1093/ajcp/40.1.58

    Article  PubMed  Google Scholar 

  181. Watson GF, Diller IC, Ludwick NV (1947) Spleen extract and tumor growth. Science 106(2754):348. https://doi.org/10.1126/science.106.2754.348

    Article  CAS  PubMed  Google Scholar 

  182. Lan Q, Peyvandi S, Duffey N, Huang YT, Barras D, Held W, Richard F, Delorenzi M, Sotiriou C, Desmedt C, Lorusso G, Ruegg C (2019) Type I interferon/IRF7 axis instigates chemotherapy-induced immunological dormancy in breast cancer. Oncogene 38(15):2814–2829. https://doi.org/10.1038/s41388-018-0624-2

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported, in whole or in part, by National Institutes of Health Grants for Specialized Programs of Research Excellence, Grant P50 CA127297 and by the Fred & Pamela Buffett Cancer Center Support Grant P30 CA036727.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Talmadge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadge, S., Cole, K. & Talmadge, J.E. Myeloid derived suppressor cells and the release of micro-metastases from dormancy. Clin Exp Metastasis 38, 279–293 (2021). https://doi.org/10.1007/s10585-021-10098-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-021-10098-8

Keywords

Navigation