Skip to main content

Advertisement

Log in

Proteomic profiling of lipid rafts in a human breast cancer model of tumorigenic progression

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Tumor biomarkers assist in the early detection of cancer, act as therapeutic targets for intervention, and function as diagnostic indicators for the evaluation of therapeutic responses. To identify novel human breast cancer biomarkers, we have analyzed the protein content of lipid rafts isolated from a series of human mammary epithelial cell lines with increasing tumorigenic potential. Since lipid rafts function as platforms for protein interaction critical to several biological processes, we hypothesized that the abundance of proteins associated with proliferation, invasion and metastasis would be dysregulated in highly transformed cells. For this purpose, the MCF10A epithelial lineage, which include benign MCF10A cells, premalignant AT and TG3B cells, and malignant CA1a tumor cells, was utilized. Detergent-resistant membranes were isolated from each line and proteins were identified and relatively quantitated using iTRAQ™ reagents and tandem mass spectrometry. 57 proteins were identified, and 1667 peptide identifications, mapping to 49 proteins, contained sufficient information for semi-quantitative analysis. When comparing malignant to benign cells, we observed consistent alterations in groups of proteins, such as a 5.7-fold average decrease in G protein content (n = 5), 2.7-fold decrease in glycosylphosphatidylinositol-linked proteins (n = 7) and 3.3-fold increase in intermediate filaments (n = 9). Several of the identified proteins, including caveolin-1, filamin A, keratins 5, 6 and 17, and vimentin, are bona fide or candidate biomarkers in clinical studies, underscoring the usefulness of the MCF10A series as a model to better understand the biological mechanisms underlying cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DCIS:

Ductal carcinoma in situ

EMT:

Epithelial mesenchymal transition

FDR:

False discovery rate

G protein:

Guanine nucleotide-binding proteins

GPI:

Glycosylphosphatidylinositol

IF:

Intermediate filament

MudPIT:

Multidimensional protein identification technology

References

  1. Hanzal-Bayer MF, Hancock JF (2007) Lipid rafts and membrane traffic. FEBS Lett 581:2098–2104

    Article  PubMed  CAS  Google Scholar 

  2. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  PubMed  CAS  Google Scholar 

  3. Patra SK (2008) Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim Biophys Acta 1785:182–206

    PubMed  CAS  Google Scholar 

  4. Lajoie P, Goetz JG, Dennis JW et al (2009) Lattices, rafts and scaffolds: domain regulation of receptor signaling at the plasma membrane. J Cell Biol 185(3):381–385

    Article  PubMed  CAS  Google Scholar 

  5. Soule HD, Maloney TM, Wolman SR et al (1990) Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 50:6075–6086

    PubMed  CAS  Google Scholar 

  6. Russo J, Tait L, Russo IH (1991) Morphological expression of cell transformation induced c-Ha-ras oncogene in human breast epithelial cells. J Cell Sci 99:453–463

    PubMed  Google Scholar 

  7. Dawson PJ, Wolman SR, Tait L et al (1996) MCF10AT: a model for the evolution of cancer from proliferative breast disease. Am J Pathol 148(1):313–319

    PubMed  CAS  Google Scholar 

  8. Santner SJ, Dawson PJ, Tait L et al (2001) Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Res Treat 65:101–110

    Article  PubMed  CAS  Google Scholar 

  9. Ostrom RS, Liu X (2007) Detergent and detergent-free methods to define lipid rafts and cavaeolae. Methods Mol Biol 400:459–468

    Article  PubMed  CAS  Google Scholar 

  10. Griffin TJ, Xie H, Bandhakavi S et al (2007) iTRAQ reagent-based quantitative proteomic analysis on a linear ion trap mass spectrometer. J Proteome Res 6:4200–4209

    Article  PubMed  CAS  Google Scholar 

  11. Feng J, Xie H, Meany DL et al (2008) Quantitative proteomic profiling of muscle type-dependent and age-dependent protein carbonylation in rat skeletal muscle mitochondria. J Gerontol 63A(11):1137–1152

    CAS  Google Scholar 

  12. Caruso JA, Reiners JJ Jr (2006) Proteolysis of HIP during apoptosis occurs within a region similar to the BID loop. Apoptosis 11(11):1877–1885

    Article  PubMed  CAS  Google Scholar 

  13. Caruso JA, Mathieu PA, Reiners JJ Jr (2005) Sphingomyelins suppress the targeted disruption of lysosomes/endosomes by the photosensitizer NPe6 during photodynamic therapy. Biochem J 392(2):325–334

    Article  PubMed  CAS  Google Scholar 

  14. Feng Y, Walsh CA (2004) The many faces of filamin: a versatile molecular scaffold for cell motility and signalling. Nat Cell Biol 6:1034–1038

    Article  PubMed  CAS  Google Scholar 

  15. Alper O, Stetler-Stevenson WG, Harris LN et al (2009) Novel anti-filamin-A antibody detects a secreted variant of filamin-A in plasma from patients with breast carcinoma and high-grade astrocytoma. Cancer Sci 100(9):1748–1756

    Article  PubMed  CAS  Google Scholar 

  16. Parton RG (1994) Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J Histochem Cytochem 42(2):155–166

    Article  PubMed  CAS  Google Scholar 

  17. Mishra S, Ande SR, Grégoire Nyomba LG (2010) The role of prohibitin in cell signaling. FEBS J 277(19):3937–3946

    Article  PubMed  CAS  Google Scholar 

  18. Staubach S, Razawi H, Hanisch FG (2009) Proteomics of MUC1-containing lipid rafts from plasma membranes and exosomes of human breast carcinoma cells MCF-7. Proteomics 9(10):2820–2835

    Article  PubMed  CAS  Google Scholar 

  19. Kim KB, Lee JW, Lee CS et al (2006) Oxidation-reduction respiratory chains and ATP synthase complex are localized in detergent-resistant lipid rafts. Proteomics 6(8):2444–2453

    Article  PubMed  CAS  Google Scholar 

  20. Ponce J, Brea D, Carrascal M et al (2010) The effect of simvastatin on the proteome of detergent-resistant membrane domains: decreases of specific proteins previously related to cytoskeletal regulation, calcium homeostasis and cell fate. Proteomics 10(10):1954–1965

    Article  PubMed  CAS  Google Scholar 

  21. Ande SR, Mishra S (2010) Palmitoylation of prohibitin at cysteine 69 facilitates its membrane translocation and interaction with Eps 15 homology domain protein 2 (EHD2). Biochem Cell Biol 88(3):553–558

    Article  PubMed  CAS  Google Scholar 

  22. Coates PJ, Nenutil R, McGregor RA et al (2001) Mammalian prohibitin proteins respond to mitochondrial stress and decrease during cellular senescence. Exp Cell Res 265(2):262–273

    Article  PubMed  CAS  Google Scholar 

  23. Stratford AL, Reipas K, Maxwell C et al (2010) Targeting tumour-initiating cells to improve the cure rates for triple-negative breast cancer. Expert Rev Mol Med 12:e22

    Article  PubMed  Google Scholar 

  24. Alvarez RH, Valero V, Hortobagyi GN (2010) Emerging targeted therapies for breast cancer. J Clin Oncol 28(20):3366–3379

    Article  PubMed  CAS  Google Scholar 

  25. Baruthio F, Quadroni M, Ruegg C et al (2008) Proteomic analysis of membrane rafts of melanoma cells identifies protein patterns characteristic of the tumor progression stage. Proteomics 8:4733–4747

    Article  PubMed  CAS  Google Scholar 

  26. Patel HH, Murray F, Insel PA (2008) G-protein-couples receptor-signaling components in membrane raft and caveolae microdomains. Handb Exp Pharmacol 186:167–184

    Article  PubMed  CAS  Google Scholar 

  27. Sharom FJ, Lehto MT (2002) Glycosylphosphatidylinositol-anchored proteins: structure, function, and cleavage by phosphatidylinositol-specific phospholipase C. Biochem Cell Biol 80:535–549

    Article  PubMed  CAS  Google Scholar 

  28. Mann KJ, Hepworth MR, Raikwar NS (2004) Effect of glycosylphosphatidylinositol (GPI)-phospholipase D overexpression on GPI metabolism. Biochem J 378:641–648

    Article  PubMed  CAS  Google Scholar 

  29. He X, Hannocks MJ, Hampson I et al (2002) GPI-specific phospholipase D mRNA expression in tumor cells of different malignancy. Clin Exp Metastasis 9(4):291–299

    Article  Google Scholar 

  30. Birchmeier C, Birchmeier W, Brand-Saberi B (1996) Epithelial mesenchymal transitions in cancer progression. Acta Anat 156:217–226

    Article  PubMed  CAS  Google Scholar 

  31. Kokkinos MI, Wafai R, Wong MK et al (2007) Vimentin and epithelial-mesenchymal transition in human breast cancer—observations in vitro and in vivo. Cells Tissues Organs 185(1–3):191–203

    Article  PubMed  CAS  Google Scholar 

  32. Thomas PA, Kirschmann DA, Cerhan JR (1999) Association between keratin and vimentin expression, malignant phenotype, and survival in postmenopausal breast cancer patients. Clin Cancer Res 5:2698–2703

    PubMed  CAS  Google Scholar 

  33. Chen MH, Yip GW, Tse GM et al (2008) Expression of basal keratins and vimentin in breast cancers of young women correlates with adverse pathologic parameters. Mod Pathol 21:1183–1191

    Article  PubMed  CAS  Google Scholar 

  34. Dabbs DJ, Chivukula M, Carter G (2006) Basal phenotype of ductal carcinoma in situ: recognition and immunohistologic profile. Mod Pathol 19:1506–1511

    Article  PubMed  CAS  Google Scholar 

  35. Kuroda N, Ohara M, Inoue K et al (2009) The majority of triple-negative breast cancer may correspond to basal-like carcinoma, but triple-negative breast cancer in not identical to basal-like carcinoma. Med Mol Morphol 42:128–131

    Article  PubMed  CAS  Google Scholar 

  36. van de Rijn M, Perou CM, Tibshirani R et al (2002) Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am J Pathol 161(6):1991–1996

    Article  PubMed  Google Scholar 

  37. Hendrix MJC, Seftor EA, Seftor REB et al (1997) Experimental co-expression of vimentin and keratin intermediate filaments in human breast cancer cells results in phenotypic interconversion and increased invasive behavior. Am J Pathol 150:483–495

    PubMed  CAS  Google Scholar 

  38. McInroy L, Maatta A (2007) Down-regulation of vimentin expression inhibits carcinoma cell migration and adhesion. Biochem Biophys Res Commun 360:109–114

    Article  PubMed  CAS  Google Scholar 

  39. Choong LY, Lim S, Chong PK et al (2010) Proteome-wide profiling of the MCF10AT breast cancer progression model. PLoS One 5(6):e11030

    Article  PubMed  Google Scholar 

  40. Lee SW, Reimer CL, Oh P et al (1998) Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 16:1391–1397

    Article  PubMed  CAS  Google Scholar 

  41. Koleske AJ, Baltimore D, Lisanti MP (1995) Reduction of caveolin and caveolae in oncogenically transformed cells. Proc Natl Acad Sci USA 92:1381–1385

    Article  PubMed  CAS  Google Scholar 

  42. Mercier I, Casimiro MC, Wang C et al (2008) Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 downregulation and RB tumor suppressor functional inactivation: implications for the response to hormonal therapy. Cancer Biol Ther 7:1212–1225

    Article  PubMed  CAS  Google Scholar 

  43. Wua P, Wang X, Lib F et al (2008) Growth suppression of MCF-7 cancer cell-derived xenografts in nude mice by caveolin-1. Biochem Biophys Res Commun 376(1):215–220

    Article  Google Scholar 

  44. Fiucci G, Ravid D, Reich R et al (2002) Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene 21(15):2365–2375

    Article  PubMed  CAS  Google Scholar 

  45. Williams TM, Medina F, Badano I et al (2004) Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J Biol Chem 279(49):51630–51646

    Article  PubMed  CAS  Google Scholar 

  46. Perrone G, Altomare V, Zagami M et al (2009) Caveolin-1 expression in human breast lobular cancer progression. Mod Pathol 22:71–78

    Article  PubMed  CAS  Google Scholar 

  47. Weigelt B, Geyer FC, Natrajan R, Lopez-Garcia MA, Ahmad AS, Savage K, Kreike B, Reis-Filho JS (2010) The molecular underpinning of lobular histological growth pattern: a genome-wide transcriptomic analysis of invasive lobular carcinomas and grade- and molecular subtype-matched invasive ductal carcinomas of no special type. J Pathol 220(1):45–57

    Article  PubMed  CAS  Google Scholar 

  48. Sloan EK, Ciocca DR, Pouliot N et al (2009) Stromal cell expression of caveolin-1 predicts outcome in breast cancer. Am J Pathol 174(6):2035–2043

    Article  PubMed  CAS  Google Scholar 

  49. Witkiewicz AK, Dasgupta A, Nguyen KH et al (2009) Stromal caveolin-1 levels predict early DCIS progression to invasive breast cancer. Cancer Biol Ther 8(11):1071–1079

    Article  PubMed  CAS  Google Scholar 

  50. Witkiewicz AK, Dasgupta A, Sammons S et al (2010) Loss of stromal caveolin-1 expression predicts poor clinical outcome in triple negative and basal-like breast cancers. Cancer Biol Ther 10(2):135–143

    Article  PubMed  Google Scholar 

  51. Yang G, Truong LD, Timme TL et al (1998) Elevated expression of caveolin is associated with prostate and breast cancer. Clin Cancer Res 4(8):1873–1880

    PubMed  CAS  Google Scholar 

  52. Pinilla SM, Honrado E, Hardisson D et al (2006) Caveolin-1 expression is associated with a basal-like phenotype in sporadic and hereditary breast cancer. Breast Cancer Res Treat 99(1):85–90

    Article  PubMed  CAS  Google Scholar 

  53. Savage K, Lambros MB, Robertson D et al (2007) Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin Cancer Res 13(1):90–101

    Article  PubMed  CAS  Google Scholar 

  54. Elsheikh SE, Green AR, Rakha EA et al (2008) Caveolin 1 and caveolin 2 are associated with breast cancer basal-like and triple-negative immunophenotype. Br J Cancer 99(2):327–334

    Article  PubMed  CAS  Google Scholar 

  55. Mammoto A, Huang S, Ingber DE (2007) Filamin links cell shape and cytoskeletal structure to Rho regulation by controlling accumulation of p190RhoGAP in lipid rafts. J Cell Sci 120:456–467

    Article  PubMed  CAS  Google Scholar 

  56. Tavano R, Contento RL, Baranda SJ et al (2006) CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nat Cell Biol 8(11):1270–1276

    Article  PubMed  CAS  Google Scholar 

  57. Ravid D, Chuderland D, Landsman L et al (2008) Filamin A is a novel caveolin-1-dependent target in IGF-I-stimulated cancer cell migration. Exp Cell Res 314(15):2762–2773

    Article  PubMed  CAS  Google Scholar 

  58. Xu Y, Bismar TA, Su J et al (2010) Filamin A regulates focal adhesion disassembly and suppresses breast cancer cell migration and invasion. J Exp Med 207(11):2421–2437

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by the Proteomics Facility Core of the Institute of Environmental Health Sciences at Wayne State University, which is supported by National Institute of Environmental Health Sciences grant P30-ES006639.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Caruso.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Fig. S1

Subcellular localization of prohibitin-2 in the MCF10A series of human breast cell lines. Cells were fixed and stained according to procedures described in “Methods”. Two independent photographs are shown per cell line. Exposure times and contrast adjustments remained constant throughout the experiment. Prohibitin-2 staining is shown in green, and nuclei are stained blue. This experiment was repeated with similar results. (PDF 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caruso, J.A., Stemmer, P.M. Proteomic profiling of lipid rafts in a human breast cancer model of tumorigenic progression. Clin Exp Metastasis 28, 529–540 (2011). https://doi.org/10.1007/s10585-011-9389-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-011-9389-5

Keywords

Navigation