Skip to main content

Detergent and Detergent-Free Methods to Define Lipid Rafts and Caveolae

  • Protocol
Methods in Membrane Lipids

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 400))

Abstract

Lipid rafts and their related membrane vesicular structures, caveolae, are cholesterol- and sphingolipid-rich microdomains of the plasma membrane that have attracted considerable interest because of their ability to concentrate numerous signaling proteins. Efforts to define the proteins that reside in lipid rafts and caveolae as well as investigations into the functional role of these microdomains in signaling, endocytosis, and other cellular processes have led to the hypothesis that they compartmentalize or prearrange molecules involved in regulating these pathways. This chapter describes biochemical approaches for defining lipid rafts and caveolae. Included are detergent- and nondetergent-based fractionations on sucrose-density gradients that isolate buoyant lipid rafts and caveolae as well as caveolin antibody-based immunoisolation of detergent-insoluble membranes that selectively isolates caveolae and not lipid rafts. Also, a general method to disrupt lipid rafts and caveolae using β-cyclodextrin that is useful for probing the role of these microdomains in cellular processes is described. The advantages and disadvantages of the respective approaches are discussed. Taken together, these methods are useful for defining the role of lipid rafts and caveolae in cell signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaul, P. W. and Anderson, R. G. (1998) Role of plasmalemmal caveolae in signal transduction. Am. J. Physiol. 275(5 Pt 1), L843–L851.

    PubMed  CAS  Google Scholar 

  2. Ostrom, R. S. and Insel, P. A. (2004) The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: Implications for molecular pharmacology. Br. J. Pharmacol. 143(2), 235–245.

    Article  PubMed  CAS  Google Scholar 

  3. Okamoto, T., Schlegel, A., Scherer, P. E., and Lisanti, M. P. (1998) Caveolins, a family of scaffolding proteins for organizing preassembled signaling complexes at the plasma membrane. J. Biol. Chem. 273(10), 5419–5422.

    Article  PubMed  CAS  Google Scholar 

  4. Palade, G. (1953) Fine structure of blood capilaries. J. Appl. Physiol. 24, 1424.

    Google Scholar 

  5. Anderson, R. G. (1998) The caveolae membrane system. Annu. Rev. Biochem. 67, 199–225.

    Article  PubMed  CAS  Google Scholar 

  6. Rapacciuolo, A., Suvarna, S., Barki-Harrington, L., et al. (2003) Protein kinase A and G protein-coupled receptor kinase phosphorylation mediates beta-1 adrenergic receptor endocytosis through different pathways. J. Biol. Chem. 278(37), 35,403–35,411.

    Article  PubMed  CAS  Google Scholar 

  7. Razani, B., Woodman, S. E., and Lisanti, M. P. (2002) Caveolae: from cell biology to animal physiology. Pharmacol. Rev. 54(3), 431–467.

    Article  PubMed  CAS  Google Scholar 

  8. Hooper, N. M. (1999) Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae. Mol. Membr. Biol. 16(2), 145–156 (review).

    Article  PubMed  CAS  Google Scholar 

  9. Song, K. S., Scherer, P. E., Tang, Z., et al. (1996) Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J. Biol. Chem. 271(25), 15,160–15,165.

    Article  PubMed  CAS  Google Scholar 

  10. Tang, Z., Scherer, P. E., Okamoto, T., et al. (1996) Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J. Biol. Chem. 271(4), 2255–2261.

    Article  PubMed  CAS  Google Scholar 

  11. Scherer, P. E., Okamoto, T., Chun, M., et al. (1996) Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc. Natl. Acad. Sci. USA 93(1), 131–135.

    Article  PubMed  CAS  Google Scholar 

  12. Scherer, P. E., Lewis, R. Y., Volonté, D., et al. (1997) Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J. Biol. Chem. 272(46), 29,337–29,346.

    Article  PubMed  CAS  Google Scholar 

  13. Razani, B., Wang, X. B., Engelman, J. A., et al. (2002) Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol. Cell Biol. 22(7), 2329–2344.

    Article  PubMed  CAS  Google Scholar 

  14. Rybin, V. O., Grabham, P. W., Elouardighi, H., and Steinberg, S. F. (2003) Caveolae-associated proteins in cardiomyocytes: caveolin-2 expression and interactions with caveolin-3. Am. J. Physiol. Heart Circ. Physiol. 285(1), H325–H332.

    PubMed  CAS  Google Scholar 

  15. Lahtinen, U., Honsho, M., Parton, R. G., Simons, K., and Verkade, P. (2003) Involvement of caveolin-2 in caveolar biogenesis in MDCK cells. FEBS Lett. 538(1–3), 85–88.

    Article  PubMed  CAS  Google Scholar 

  16. Ostrom, R. S. (2005) Caveolins muscle their way into the regulation of cell differentiation, development, and function. Focus on “Muscle-specific interaction of caveolin isoforms: differential complex formation between caveolins in fibroblastic vs. muscle cells.” Am. J. Physiol. Cell Physiol. 288(3), C507–C509.

    Article  PubMed  CAS  Google Scholar 

  17. Sowa, G., Pypaert, M., and Sessa, W. C. (2001) Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proc. Natl. Acad. Sci. USA 98(24), 14,072–14,077.

    Article  PubMed  CAS  Google Scholar 

  18. Williams, T. M. and Lisanti, M. P. (2004) The caveolin proteins. Genome Biol. 5(3), 214.

    Article  PubMed  Google Scholar 

  19. Oh, P. and Schnitzer, J. E. (2001) Segregation of Heterotrimeric G Proteins in Cell Surface Microdomains. G(q) binds caveolin to concentrate in caveolae, whereas g(i) and g(s) target lipid rafts by default. Mol. Biol. Cell. 12(3), 685–698.

    PubMed  CAS  Google Scholar 

  20. Henderson, R. M., Edwardson, J. M., Geisse, N. A., and Saslowsky, D. E. (2004) Lipid rafts: feeling is believing. News Physiol. Sci. 19, 39–43.

    PubMed  CAS  Google Scholar 

  21. Oh, P. and Schnitzer, J. E. (1999) Immunoisolation of caveolae with high affinity antibody binding to the oligomeric caveolin cage. Toward understanding the basis of purification. J. Biol. Chem. 274(33), 23,144–23,154.

    Article  PubMed  CAS  Google Scholar 

  22. Ostrom, R. S., Gregorian, C., Drenan, R. M., et al. (2001) Receptor number and caveolar colocalization determine receptor coupling efficiency to adenylyl cyclase. J. Biol. Chem. 276(45), 42,063–42,069.

    Article  PubMed  CAS  Google Scholar 

  23. Smart, E. J. and Anderson, R. G. (2002) Alterations in membrane cholesterol that affect structure and function of caveolae. Methods Enzymol. 353, 131–139.

    Article  PubMed  CAS  Google Scholar 

  24. Ostrom, R. S., Bundey, R. A., and Insel, P. A. (2004) Nitric oxide inhibition of adenylyl cyclase type 6 activity is dependent upon lipid rafts and caveolin signaling complexes. J. Biol. Chem. 279(19), 19,846–19,853.

    Article  PubMed  CAS  Google Scholar 

  25. Orlandi, P. A. and Fishman, P. H. (1998) Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J. Cell Biol. 141(4), 905–915.

    Article  PubMed  CAS  Google Scholar 

  26. Schnitzer, J. E., Oh, P., Pinney, E., and Allard, J. (1994) Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell Biol. 127(5), 1217–1232.

    Article  PubMed  CAS  Google Scholar 

  27. Christian, A. E., Haynes, M. P., Phillips, M. C., and Rothblat, G. H. (1997) Use of cyclodextrins for manipulating cellular cholesterol content. J. Lipid Res. 38(11), 2264–2272.

    PubMed  CAS  Google Scholar 

  28. Head, B. P., Patel, H. H., Roth, D. M., et al. (2005) G-protein-coupled receptor signaling components localize in both sarcolemmal and intracellular caveolin-3-associated microdomains in adult cardiac myocytes. J. Biol. Chem. 280(35), 31,036–31,044.

    Article  PubMed  CAS  Google Scholar 

  29. Zacharias, D. A., Violin, J. D., Newton, A. C., and Tsien, R. Y. (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296(5569), 913–916.

    Article  PubMed  CAS  Google Scholar 

  30. Ostrom, R. S., Liu, X., Head, B. P., et al. (2002) Localization of adenylyl cyclase isoforms and G protein-coupled receptors in vascular smooth muscle cells: expression in caveolin-rich and noncaveolin domains. Mol. Pharmacol. 62(5), 983–992.

    Article  PubMed  CAS  Google Scholar 

  31. Capozza, F., Cohen, A. W., Cheung, M. W., et al. (2005) Muscle-specific interaction of caveolin isoforms: differential complex formation between caveolins in fibroblastic vs. muscle cells. Am. J. Physiol. Cell Physiol. 288(3), C677–C691.

    Article  PubMed  CAS  Google Scholar 

  32. Razani, B. and Lisanti, M. P. (2001) Caveolin-deficient mice: insights into caveolar function in human disease. J. Clin. Invest. 108(11), 1553–1561.

    PubMed  CAS  Google Scholar 

  33. Smart, E. J., Ying, Y. S., Mineo, C., and Anderson, R. G. (1995) A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc. Natl. Acad. Sci. USA 92(22), 10,104–10,108.

    Article  PubMed  CAS  Google Scholar 

  34. Rybin, V. O., Xu, X., and Steinberg, S. F. (1999) Activated protein kinase C isoforms target to cardiomyocyte caveolae: stimulation of local protein phosphorylation. Circ. Res. 84(9), 980–988.

    PubMed  CAS  Google Scholar 

  35. Pike, L. J. (2003) Lipid rafts: bringing order to chaos. J. Lipid Res. 44(4), 655–667.

    Article  PubMed  CAS  Google Scholar 

  36. Rybin, V. O., Xu, X., Lisanti, M. P., and Steinberg, S. F. (2000) Differential targeting of beta-adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J. Biol. Chem. 275(52), 41,447–41,457.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Ostrom, R.S., Liu, X. (2007). Detergent and Detergent-Free Methods to Define Lipid Rafts and Caveolae. In: Dopico, A.M. (eds) Methods in Membrane Lipids. Methods in Molecular Biology™, vol 400. Humana Press. https://doi.org/10.1007/978-1-59745-519-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-519-0_30

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-662-7

  • Online ISBN: 978-1-59745-519-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics