Skip to main content

An orthotopic, postsurgical model of luciferase transfected murine osteosarcoma with spontaneous metastasis

Abstract

Osteosarcoma (OS) is the most common bone tumor in humans. Newer, more clinically relevant models of OS are required to investigate novel therapeutics. The ability to study spontaneous micrometastases in the absence of a primary tumor is important since this is the manner in which most patients are treated clinically. Therefore, we have developed a novel model of murine OS using the DLM8 cell line, which is syngeneic to C3H mice. We have engineered these cells to express firefly luciferase so the development of metastases can be followed serially and non-invasively. These cells form osteolytic/osteoproductive lesions and metastasize spontaneously after orthotopic implantation in the proximal tibia, and the development of soft-tissue metastasis can be followed serially by luciferase expression following amputation. We have demonstrated a significant prolongation of disease-free and overall survival in the surgical adjuvant setting following treatment with doxorubicin or carboplatin, drugs which form the mainstay of treatment for human OS. In conclusion, we have developed a novel surgical adjuvant model of metastatic OS in immunocompetent mice that closely recapitulates the clinical situation, allowing the evaluation of novel therapeutics in the context of minimal residual disease.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Mueller F, Fuchs B, Kaser-Hotz B (2007) Comparative biology of human and canine osteosarcoma. Anticancer Res 27(1A):155–164

    CAS  PubMed  Google Scholar 

  2. Khanna C (2008) Novel targets with potential therapeutic applications in osteosarcoma. Curr Oncol Rep 10(4):350–358

    Article  CAS  PubMed  Google Scholar 

  3. Bielack SS, Carrle D, Hardes J et al (2008) Bone tumors in adolescents and young adults. Curr Treat Options Oncol 9(1):67–80

    Article  PubMed  Google Scholar 

  4. Berlin O, Samid D, Donthineni-Rao R et al (1993) Development of a novel spontaneous metastasis model of human osteosarcoma transplanted orthotopically into bone of athymic mice. Cancer Res 53(20):4890–4895

    CAS  PubMed  Google Scholar 

  5. Comstock KE, Hall CL, Daignault S et al. (2009) A bioluminescent orthotopic mouse model of human osteosarcoma that allows sensitive and rapid evaluation of new therapeutic agents In vivo. In vivo (Athens, Greece) 23(5): 661–668

  6. Crnalic S, Hakansson I, Boquist L et al (1997) A novel spontaneous metastasis model of human osteosarcoma developed using orthotopic transplantation of intact tumor tissue into tibia of nude mice. Clin Exp Metastasis 15(2):164–172

    Article  CAS  PubMed  Google Scholar 

  7. Dass CR, Choong PF (2007) Zoledronic acid inhibits osteosarcoma growth in an orthotopic model. Mol Cancer Ther 6(12 Pt 1):3263–3270

    Article  CAS  PubMed  Google Scholar 

  8. Dass CR, Ek ET, Choong PF (2007) Human xenograft osteosarcoma models with spontaneous metastasis in mice: clinical relevance and applicability for drug testing. J Cancer Res Clin Oncol 133(3):193–198

    Article  PubMed  Google Scholar 

  9. Dass CR, Ek ET, Contreras KG et al (2006) A novel orthotopic murine model provides insights into cellular and molecular characteristics contributing to human osteosarcoma. Clin Exp Metastasis 23(7–8):367–380

    PubMed  Google Scholar 

  10. Khanna C, Khan J, Nguyen P et al (2001) Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res 61(9):3750–3759

    CAS  PubMed  Google Scholar 

  11. Khanna C, Prehn J, Yeung C et al (2000) An orthotopic model of murine osteosarcoma with clonally related variants differing in pulmonary metastatic potential. Clin Exp Metastasis 18(3):261–271

    Article  CAS  PubMed  Google Scholar 

  12. Lisle JW, Choi JY, Horton JA et al (2008) Metastatic osteosarcoma gene expression differs in vitro and in vivo. Clinical orthopaedics and related research 466(9):2071–2080

    Article  PubMed  Google Scholar 

  13. Luu HH, Kang Q, Park JK et al (2005) An orthotopic model of human osteosarcoma growth and spontaneous pulmonary metastasis. Clin Exp Metastasis 22(4):319–329

    Article  PubMed  Google Scholar 

  14. Miretti S, Roato I, Taulli R et al (2008) A mouse model of pulmonary metastasis from spontaneous osteosarcoma monitored in vivo by Luciferase imaging. PloS one 3(3):e1828

    Article  PubMed  Google Scholar 

  15. Yuan J, Ossendorf C, Szatkowski JP et al (2009) Osteoblastic and osteolytic human osteosarcomas can be studied with a new xenograft mouse model producing spontaneous metastases. Cancer Invest 27(4):435–442

    Article  PubMed  Google Scholar 

  16. Koto K, Horie N, Kimura S et al (2009) Clinically relevant dose of zoledronic acid inhibits spontaneous lung metastasis in a murine osteosarcoma model. Cancer Lett 274(2):271–278

    Article  CAS  PubMed  Google Scholar 

  17. Asai T, Ueda T, Itoh K et al (1998) Establishment and characterization of a murine osteosarcoma cell line (LM8) with high metastatic potential to the lung. Int J Cancer 76(3):418–422

    Article  CAS  PubMed  Google Scholar 

  18. De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200(4):429–447

    Article  PubMed  Google Scholar 

  19. Khanna C, Hunter K (2005) Modeling metastasis in vivo. Carcinogenesis 26(3):513–523

    Article  CAS  PubMed  Google Scholar 

  20. Yamada N, Hata M, Ohyama H et al (2009) Immunotherapy with interleukin-18 in combination with preoperative chemotherapy with ifosfamide effectively inhibits postoperative progression of pulmonary metastases in a mouse osteosarcoma model. Tumour Biol 30(4):176–184

    Article  CAS  PubMed  Google Scholar 

  21. Bruns CJ, Harbison MT, Kuniyasu H et al (1999) In vivo selection and characterization of metastatic variants from human pancreatic adenocarcinoma by using orthotopic implantation in nude mice. Neoplasia 1(1):50–62 (New York, NY)

    Article  CAS  PubMed  Google Scholar 

  22. Pettaway CA, Pathak S, Greene G et al (1996) Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res 2(9):1627–1636

    CAS  PubMed  Google Scholar 

  23. Fidler IJ, Wilmanns C, Staroselsky A et al (1994) Modulation of tumor cell response to chemotherapy by the organ environment. Cancer Metastasis Rev 13(2):209–222

    Article  CAS  PubMed  Google Scholar 

  24. Wilmanns C, Fan D, O’Brian CA et al (1992) Orthotopic and ectopic organ environments differentially influence the sensitivity of murine colon carcinoma cells to doxorubicin and 5-fluorouracil. Int J Cancer 52(1):98–104

    Article  CAS  PubMed  Google Scholar 

  25. Paoloni M, Khanna C (2008) Translation of new cancer treatments from pet dogs to humans. Nat Rev 8(2):147–156

    CAS  Google Scholar 

  26. Ta HT, Dass CR, Choong PF et al (2009) Osteosarcoma treatment: state of the art. Cancer Metastasis Rev 28(1–2):247–263

    Article  PubMed  Google Scholar 

  27. Keyes KA, Mann L, Teicher B et al (2003) Site-dependent angiogenic cytokine production in human tumor xenografts. Cytokine 21(2):98–104

    Article  CAS  PubMed  Google Scholar 

  28. Burke F (1999) Cytokines (IFNs, TNF-alpha, IL-2 and IL-12) and animal models of cancer. Cytokines. Cell Mol Ther 5(1):51–61

    CAS  Google Scholar 

  29. Garofalo A, Chirivi RG, Scanziani E et al (1993) Comparative study on the metastatic behavior of human tumors in nude, beige/nude/xid and severe combined immunodeficient mice. Invasion Metastasis 13(2):82–91

    CAS  PubMed  Google Scholar 

  30. Mueller BM, Reisfeld RA (1991) Potential of the scid mouse as a host for human tumors. Cancer Metastasis Rev 10(3):193–200

    Article  CAS  PubMed  Google Scholar 

  31. Anderson P, Kopp L, Anderson N et al (2008) Novel bone cancer drugs: investigational agents and control paradigms for primary bone sarcomas (Ewing’s sarcoma and osteosarcoma). Expert Opin Investig Drugs 17(11):1703–1715

    Article  CAS  PubMed  Google Scholar 

  32. Dow SW, Fradkin LG, Liggitt DH et al (1999) Lipid-DNA complexes induce potent activation of innate immune responses and antitumor activity when administered intravenously. J Immunol 163(3):1552–1561

    CAS  PubMed  Google Scholar 

  33. Hafeman S, London C, Elmslie R et al. (2009) Evaluation of liposomal clodronate for treatment of malignant histiocytosis in dogs. Cancer Immunol Immunother

  34. Higgins RJ, McKisic M, Dickinson PJ et al (2004) Growth inhibition of an orthotopic glioblastoma in immunocompetent mice by cationic lipid-DNA complexes. Cancer Immunol Immunother 53(4):338–344

    Article  CAS  PubMed  Google Scholar 

  35. Kurzman ID, MacEwen EG, Rosenthal RC et al (1995) Adjuvant therapy for osteosarcoma in dogs: results of randomized clinical trials using combined liposome-encapsulated muramyl tripeptide and cisplatin. Clin Cancer Res 1(12):1595–1601

    CAS  PubMed  Google Scholar 

  36. Mori K, Ando K, Heymann D (2008) Liposomal muramyl tripeptide phosphatidyl ethanolamine: a safe and effective agent against osteosarcoma pulmonary metastases. Expert Rev Anticancer Ther 8(2):151–159

    Article  CAS  PubMed  Google Scholar 

  37. Patel SJ, Lynch JW Jr, Johnson T et al (2002) Dose-intense ifosfamide/doxorubicin/cisplatin based chemotherapy for osteosarcoma in adults. Am J Clin Oncol 25(5):489–495

    Article  PubMed  Google Scholar 

  38. Meyers PA, Gorlick R (1997) Osteosarcoma. Pediatr Clin North Am 44(4):973–989

    Article  CAS  PubMed  Google Scholar 

  39. Chiang AC, Massague J (2008) Molecular basis of metastasis. N Engl J Med 359(26):2814–2823

    Article  CAS  PubMed  Google Scholar 

  40. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev 9(4):239–252

    CAS  Google Scholar 

  41. Krishnan K, Khanna C, Helman LJ (2006) The molecular biology of pulmonary metastasis. Thorac Surg Clin 16(2):115–124

    Article  PubMed  Google Scholar 

  42. Mendoza M, Khanna C (2009) Revisiting the seed and soil in cancer metastasis. Int J Biochem Cell Biol 41(7):1452–1462

    Article  CAS  PubMed  Google Scholar 

  43. Bruland OS, Hoifodt H, Saeter G et al (2005) Hematogenous micrometastases in osteosarcoma patients. Clin Cancer Res 11(13):4666–4673

    Article  CAS  PubMed  Google Scholar 

  44. Dass CR, Choong PF (2007) GFP expression alters osteosarcoma cell biology. DNA Cell Biol 26(8):599–601

    Article  CAS  PubMed  Google Scholar 

  45. Kerbel RS (1998) What is the optimal rodent model for anti-tumor drug testing? Cancer Metastasis Rev 17(3):301–304

    Article  PubMed  Google Scholar 

  46. Talmadge JE, Singh RK, Fidler IJ et al (2007) Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol 170(3):793–804

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Ryan Hansen for his help in preparation of the transfection vector and Dr. Stewart Ryan for his assistance in creating the amputation procedure used herein. We would also like to thank Drs. Christian Puttlitz, Brandon Santoni, and Amy Lyons for their help with the imaging modalities used herein. We would also like to thank Dr. E. Kleinerman for the cell line provided.

Funding

This work was supported by the Colorado State University Cancer Supercluster and the estate of Mr. Jeffery Harbers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas H. Thamm.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sottnik, J.L., Duval, D.L., J. Ehrhart, E. et al. An orthotopic, postsurgical model of luciferase transfected murine osteosarcoma with spontaneous metastasis. Clin Exp Metastasis 27, 151–160 (2010). https://doi.org/10.1007/s10585-010-9318-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-010-9318-z

Keywords

  • Mouse
  • Surgery
  • Bone
  • Syngeneic
  • C3H
  • Dunn