Skip to main content
Log in

The implication of atmospheric aerosols on rainfall over Malawi, Southeast Africa

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Understanding the driving factors for the change of climatic patterns is crucial for the implementation of mitigation and adaptation measures. Significant effort has been made to understand changes in climatic patterns; however, less has been done to investigate the driving factors that influence the trends of early rainfall over Malawi. Hence, a substantial research gap exists concerning in the implementation of mitigation and adaptation measures. The present study investigates the implications of atmospheric aerosols on precipitation during the early rainfall season over Malawi. Open burning, such as bushfires and burning of crop residues by local farmers, are the major anthropogenic activities enhancing aerosol accumulation in the atmosphere and hence need to be strictly controlled over the domain and the surrounding region. The present results show that rainfall generally starts between October and November and gradually increases with the maximum observed in January and ends in March in most areas. Monthly aerosol optical depth (AOD550) has an opposite pattern to that of rainfall with high AOD550 (>0.4) between September and October, mostly over southern areas and along with Lake Malawi. An analysis of rainfall during the beginning of the season indicates a significant decrease of rainfall over the southern areas of Malawi, associated with high AOD550, while insignificant change is observed over the central and northern areas associated with low AOD550 values. Statistical analyses among AOD550, cloud effective radius (CER), and precipitation demonstrates that negative trends of rainfall are strongly associated with a high concentration of anthropogenic aerosols from biomass burning during October. These aerosols might have absorbed excess moisture and disrupted local convective processes associated with the first rainfall that the domain receives, between the months of October and November. Therefore, regional control measures are required to reduce the excess emissions of anthropogenic aerosols into the atmosphere, such as controlling open burning during the active fire period (July-October).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data used in this paper are available upon the request from the corresponding author.

References

  • Ackerman AS, Toom OB, Stevens DE, Heymsfield AJ, Ramanathan V, Welton EJ (2000) Reduction of tropical cloudiness by soot. Science 1042(2000):1042–1047. https://doi.org/10.1126/science.288.5468.1042

    Article  Google Scholar 

  • Adesina AJ, Kumar KR, Sivakumar V (2015) Variability in aerosol optical properties and radiative forcing over Gorongosa (18.97oS, 34.35oE) in Mozambique. Meteorol Atmos Phys 127(2):15. https://doi.org/10.1007/s00703-014-0352-2

    Article  Google Scholar 

  • Adesina AJ, Kumar KR, Sivakumar V (2016) Aerosol-cloud-precipitation interactions over major cities in South Africa: impact on regional environment and climate change. Aerosol Air Qual Res 2012:195–211. https://doi.org/10.4209/aaqr.2015.03.0185

    Article  Google Scholar 

  • Alexander F, Nyasulu M (2021) Diagnosis of wet and dry events and its associated atmospheric circulation anomaly over Malawi, Southeast Africa. Dyn Atmospheres Oceans 94(March):101221. https://doi.org/10.1016/j.dynatmoce.2021.101221

    Article  Google Scholar 

  • Ali A, Bilal M, Wang Y, Nichol JE, Mhawish A (2022) Accuracy assessment of CAMS and MERRA-2 reanalysis PM 2.5 and PM 10 concentrations over China. Atmos Environ 288:119297. https://doi.org/10.1016/j.atmosenv.2022.119297

  • Bhawar RL, Devara PCS (2010) Study of successive contrasting monsoons (2001-2002) in terms of aerosol variability over a tropical statio Pune, India. Atmos Chem Phys 10(1):29–37. https://doi.org/10.5194/acp-10-29-2010

    Article  Google Scholar 

  • Boiyo R, Kumar KR, Zhao T (2017) Statistical intercomparison and validation of multisensory aerosol optical depth retrievals over three AERONET sites in Kenya, East Africa. Atmos Res 197(July):277–288. https://doi.org/10.1016/j.atmosres.2017.07.012

    Article  Google Scholar 

  • Chen D, Ou T, Gong L, Xu CY, Li W, Ho CH, Qian W (2010) Spatial interpolation of daily precipitation in China 1951-2005. Adv Atmos Sci 27(6):1221–1232. https://doi.org/10.1007/s00376-010-9151-y

    Article  Google Scholar 

  • Cheng F, Zhang J, He J, Zha Y, Li Q, Li Y (2016) Analysis of aerosol-cloud-precipitation interactions based on MODIS data. Adv Space Res 59(1):63–73. https://doi.org/10.1016/j.asr.2016.08.042

    Article  Google Scholar 

  • Cherrier G, Belut E, Gerardin T, Tanière A, Rimbert N (2017) Aerosol particles scavenging by a droplet: microphysical modeling in the Greenfield gap. Atmos Environ 166:519–530. https://doi.org/10.1016/j.atmosenv.2017.07.052

    Article  Google Scholar 

  • Chu DA, Kaufman YJ, Ichoku C, Remer LA, Tanré D, Holben BN (2002) Validation of MODIS aerosol optical depth retrieval over land. Geophys Res Lett 29(12):MOD2-1-MOD2-4. https://doi.org/10.1029/2001GL013205

    Article  Google Scholar 

  • Fiwa L, Vanuytrecht E, Wiyo KA, Raes D (2014) Effect of rainfall variability on the length of the crop growing period over the past three decades in central Malawi. Clim Res 62:45–58. https://doi.org/10.3354/cr01263

    Article  Google Scholar 

  • Foehn A, García Hernández J, Schaefli B, De Cesare G (2018) Spatial interpolation of precipitation from multiple rain gauge networks and weather radar data for operational applications in Alpine catchments. J Hydr 563(November 2017):1092–1110. https://doi.org/10.1016/j.jhydrol.2018.05.027

    Article  Google Scholar 

  • Funk CC, Peterson PJ, Landsfeld MF, Pedreros DH, Verdin JP, Rowland JD, Romero BE, Husak GJ, Michaelsen JC, Verdin AP (2014) A quasi-global precipitation time series for drought monitoring. US Geol Surv Data Ser 832:1–12. https://doi.org/10.3133/ds832

    Article  Google Scholar 

  • Freedman D, Pisani R, Purves R (2007) Statistics, 4th edn. W.W. Norton

  • Gelaro R, McCarty W, Su’arez MJ, Todling R, Molod A, Takacs L, Randles CA, Darmenov A, Bosilovich MG, Reichle R, Wargan K (2017) The modern-era retrospective analysis for research and applications, version 2 (merra-2). J Clim 30(14):5419–5454

    Article  Google Scholar 

  • Thulu GFD, Katengeza EW, Mkandawire M (2017) Rainfall trends for El Niño seasons over Malawi from 1970 to 2016 and its impact on crop yield and hydropower generation. Int J Sci Res Publ 7(12). https://doi.org/10.13140/RG.2.2.14341.19689

  • Gunaseelan I, Bhaskar BV, Muthuchelian K, K. (2014) The effect of aerosol optical depth on rainfall with reference to meteorology over metro cities in India. Environ Sci Pollut Res 21(13):8188–8197. https://doi.org/10.1007/s11356-014-2711-4

    Article  Google Scholar 

  • Guo J, Chen X, Su T, Liu L, Zheng Y, Chen D, Zhai P (2020) The climatology of lower tropospheric temperature inversions in China from radiosonde measurements: Roles of black carbon, local meteorology, and large-scale subsidence. J Clim 33(21):9327–9350. https://doi.org/10.1175/JCLI-D-19-0278.1

    Article  Google Scholar 

  • Haghtalab N, Moore N, Ngongondo C (2019) Spatio-temporal analysis of rainfall variability and seasonality in Malawi. Reg Environ Change. 19(7):2041–2054. https://doi.org/10.1007/s10113-019-01535-2

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horanyi A, Munoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146:1999–2049. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  • Hersey SP, Garland MR, Crosbie E, Shingler T, Sorooshian A, Piketh S, Burger R (2015) An overview of regional and local characteristics of aerosols in South Africa using satellite, ground, and modeling data. Atmos Chem Phys 15(8):4259–4278. https://doi.org/10.5194/acp-15-4259-2015

    Article  Google Scholar 

  • IPCC (2021) In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the SixthAssessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. InPress

    Google Scholar 

  • Jiang JH, Su H, Zhai C, Massie ST, Schoeberl MR, Colarco PR, Platnick S, Gu Y, Liou KN (2011) Influence of convection and aerosol pollution on ice cloud particle effective radius. Atmos Chem Phys 11(2):457–463

    Article  Google Scholar 

  • Jin M, Shepherd JM (2008) Aerosol relationships to warm season clouds and rainfall at monthly scales over east China: urban land versus ocean. J Geophys Res Atmos 113(24):1–12. https://doi.org/10.1029/2008JD010276

    Article  Google Scholar 

  • Jury MR, Mwafulirwa ND (2002) Climate variability in Malawi, PART 1: dry summers, statistical associations and predictability. Int J Climatol 1302:1289–1302. https://doi.org/10.1002/joc.771

    Article  Google Scholar 

  • Joshua MK, Ngongondo C, Chipungu F, Monjerezi M, Liwenga E, Majule AE, Stathers T, Lamboll R (2016) Climate change in semi-arid Malawi: perceptions, adaptation strategies and water governance. Jàmbá 8:1–10. https://doi.org/10.4102/jamba.v8i3.255

    Article  Google Scholar 

  • Kant S, Panda J, Gautam R (2019a) A seasonal analysis of aerosol-cloud-radiation interaction over Indian region during 2000–2017. Atmos Environ 201(2018):212–222. https://doi.org/10.1016/j.atmosenv.2018.12.044

    Article  Google Scholar 

  • Kant S, Panda J, Pani SK, Wang PK (2019b) Long-term study of aerosol-cloud-precipitation interaction over the eastern part of India using satellite observations during pre-monsoon season. Theor Appl Climatol 136:605–626

    Article  Google Scholar 

  • Kaufman YJ, Tanr D, Remer LA, Vermote EF, Chu A (1997) Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer after the launch of MODIS the distribution. J Geophys Res Atmos 102((D14)(96)):51–67

    Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Griffin, London

    Google Scholar 

  • Kim KH, Shim PS, Shin S (2019) An alternative bilinear interpolation method between spherical grids. Atmosphere 10(3):123. https://doi.org/10.3390/atmos10030123

  • Kumar KR, Sivakumar V, Reddy RR, Gopal KR, Adesina AJ (2013) Inferring wavelength dependence of AOD and Ångström exponent over a sub-tropical station in South Africa using AERONET data: influence of meteorology, long-range transport and curvature effect. Sci Total Environ 461–462:397–408. https://doi.org/10.1016/j.scitotenv.2013.04.095

    Article  Google Scholar 

  • Kumar KR, Sivakumar V, Yin Y, Reddy RR, Kang N, Diao Y, Yu X (2014) Long-term (2003-2013) climatological trends and variations in aerosol optical parameters retrieved from MODIS over three stations in South Africa. Atmos Environ 95:400–408. https://doi.org/10.1016/j.atmosenv.2014.07.001

    Article  Google Scholar 

  • Levy RC, Remer LA, Mattoo S, Vermote EF, Kaufman YJ (2007) Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. J Geophys Res 112:D13211. https://doi.org/10.1029/2006JD007811

  • Levy H, Horowitz LW, Schwarzkopf MW, Ming Y, Golaz JC, Naik V, Ramaswamy V (2013) The roles of aerosol direct and indirect effects in past and future climate change. J Geophys Res Atmos 118(10):4521–4532. https://doi.org/10.1002/jgrd.50192

    Article  Google Scholar 

  • Levy RC, Remer LA, Kleidman RG, Mattoo S, Ichoku C, Kahn R, Eck TF (2010) Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos Chem Phys 10399–10420. https://doi.org/10.5194/acp-10-10399-2010

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Musonda B, Jing Y, Nyasulu M, Libanda B (2021) Long-term spatial and temporal variations of aerosol optical depth during 2000–2020 over Zambia, southcentral Africa. Air Qual Atmos Health. https://doi.org/10.1007/s11869-021-01091-x

  • Mtilatila L, Bronstert A, Shrestha P, Kadewere P, Klaus V (2020) Susceptibility of water resources and hydropower production to climate change in the tropics: the case of Lake Malawi and Shire River Basins, SE Africa. Hydrol. https://doi.org/10.3390/hydrology7030054

  • Muthoni FK, Odongo VO, Ochieng J, Mugalavai EM, Mourice SK, Hoesche-Zeledon I, Bekunda M (2019) Long-term spatial-temporal trends and variability of rainfall over Eastern and Southern Africa. Theor Appl Climatol 137(3–4):1869–1882. https://doi.org/10.1007/s00704-018-2712-1

    Article  Google Scholar 

  • Myhre G, Stordal F, Johnsrud M, Kaufman YJ, Rosenfeld D, Storelvmo T, Isaksen ISA (2007) Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models. Atmos Chem Phys 7(12):3081–3101. https://doi.org/10.5194/acp-7-3081-2007

    Article  Google Scholar 

  • Ngoma H, Wen W, Ojara M, Ayugi B (2021) Assessing current and future spatiotemporal precipitation variability and trends over Uganda, East Africa, based on CHIRPS and regional climate model datasets. Meteorol Atmos Phys 133(3):823–843. https://doi.org/10.1007/s00703-021-00784-3

    Article  Google Scholar 

  • Ngongondo C, Xu C, Gottschalk L (2011) Evaluation of spatial and temporal characteristics of rainfall in Malawi: a case of data scarce region. Theor Appl Climatol (January 2014):1–16. https://doi.org/10.1007/s00704-011-0413-0

  • Ngongondo C, Tallaksen LM, Xu C (2014) Growing season length and rainfall extremes analysis in Malawi. In: Hydrology in a Changing World: Environmental and Human Dimensions, Proceedings of FRIEND-Water 2014, Montpellier, France, October 2014 (IAHS Publ. 363, 2014). AHS Press, Montpellier, France

  • Nicholson SE, Klotter D, and Chavula G (2014) A detailed rainfall climatology for Malawi, Southern Africa. Int J Climatol, 325(February 2013), 315–325. https://doi.org/10.1002/joc.3687

  • Nkunzimana A, Bi S, Alriah MAA, Zhi T, Kur NAD (2020) Comparative analysis of the performance of satellite-based rainfall products over various topographical unities in Central East Africa: case of Burundi. Earth Space Scie 7(5). https://doi.org/10.1029/2019EA000834

  • Nyasulu M, Haque M, Kumar KR, Banda N, Ayugi B, Uddin J (2021) Temporal patterns of remote-sensed tropospheric carbon dioxide and methane over an urban site in Malawi, Southeast Africa: implications for climate effects. Atmos Pollut Res. https://doi.org/10.1016/j.apr.2021.02.005

  • Nyasulu M, Haque MM, Boiyo R, Kumar RK, Zhang Y (2020) Seasonal climatology and relationship between AOD and cloud properties inferred from the MODIS over Malawi, Southeast Africa. Atmos Pollut Res 11(11):1933–1952. https://doi.org/10.1016/j.apr.2020.07.023

    Article  Google Scholar 

  • Nyasulu M, Haque MM, Musonda B, Fang C, C. (2022) The long-term spatial and temporal distribution of aerosol optical depth and its associated atmospheric circulation over Southeast Africa. Environ Sci Pollut Res 0123456789. https://doi.org/10.1007/s11356-021-18446-7

  • Pandey N, Panwar K, Sharma M, Punia MP (2016) Analysis of spatial interpolation techniques for rainfall data using various methods: a case study of Bisalpur catchment area. Int J Eng Res Tech 4(23):2014

    Google Scholar 

  • Queface AJ, Piketh SJ, Annegarn HJ, Holben BN, Uthui RJ (2003) Retrieval of aerosol optical thickness and size distribution from the CIMEL Sun photometer over Inhaca Island, Mozambique. J Geophys Res Atmos 108(13):SAF 45-1-SAF 45-9. https://doi.org/10.1029/2002JD002374

    Article  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosol, climate and the hydrological cycle. Science 294(December):2119–2124. https://doi.org/10.1126/science.1064034

    Article  Google Scholar 

  • Randles CA, Da Silva AM, Buchard V, Colarco PR, Darmenov A, Govindaraju R, Smirnov A, Holben B, Ferrare R, Hair J, Shinozuka Y (2017) The MERRA-2 aerosol reanalysis, 1980 onward. Part I: system description and data assimilation evaluation. J Clim 30(17):6823–6850

  • Remer LA, Kaufman YJ, Tanré D, Mattoo S, Chu DA, Martins JV, Holben BN (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62(4):947–973. https://doi.org/10.1175/JAS3385.1

    Article  Google Scholar 

  • Rivera JA, Hinrichs S, Marianetti G (2019) Using CHIRPS dataset to assess wet and dry conditions along the semiarid Central-Western Argentina. Adv Met. https://doi.org/10.1155/2019/8413964

  • Rudich Y, Khersonsky O, Rosenfeld D (2002) Treating clouds with a grain of salt. Geophysic Res Lett 29(22):17-1-17–4. https://doi.org/10.1029/2002gl016055

    Article  Google Scholar 

  • Schroeder W, Oliva P, Giglio L, Csiszar LA (2014) The New VIIRS 375 m active fi re detection data product : algorithm description and initial assessment. RemoteSens Envron 143:85–96. https://doi.org/10.1016/j.rse.2013.12.008

    Article  Google Scholar 

  • Simelton E, Quinn CH, Batisani N, Dougill AJ, Dyer JC, Fraser EDG, Stringer LC (2013) Is rainfall really changing? Farmers’ perceptions, meteorological data, and policy implications. Clim Develop 5(2):123–138. https://doi.org/10.1080/17565529.2012.751893

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389. https://doi.org/10.2307/22858.91

    Article  Google Scholar 

  • Stevens B, Feingold G (2009) Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461(7264):607–613. https://doi.org/10.1038/nature08281

    Article  Google Scholar 

  • Thomas MA, Devasthale A, Tjernström M, Ekman AML (2019) The relation between aerosol vertical distribution and temperature inversions in the arctic in winter and spring. GeophysRes Lett 46(5):2836–2845. https://doi.org/10.1029/2018GL081624

    Article  Google Scholar 

  • Sutcliffe C, Dougill AJ, Quinn CH (2016) Evidence and perceptions of rainfall change in Malawi: do maize cultivar choices enhance climate change adaptation in sub-Saharan Africa? Reg Environ Change. 16(4):1215–1224. https://doi.org/10.1007/s10113-015-0842-x

    Article  Google Scholar 

  • Tadeyo E, Chen D, Ayugi B, Yao C (2020) Characterization of spatio-temporal trends and periodicity of precipitation over Malawi during 1979-2015. Atmos 11(9):1–17. https://doi.org/10.3390/ATMOS11090891

    Article  Google Scholar 

  • Tesfaye M, Sivakumar V, Botai J, Tsidu GM (2011) Aerosol climatology over South Africa based on 10 years of Multiangle Imaging Spectroradiometer (MISR) data. J Geophys Res Atmos 116(20):1–17. https://doi.org/10.1029/2011JD016023

    Article  Google Scholar 

  • Vakkari V, Beukes JP, Dal Maso M, Aurela M, Josipovic M, van Zyl PG (2018) Major secondary aerosol formation in southern African open biomass burning plumes. Nat Geosci 11(8):580–583. https://doi.org/10.1038/s41561-018-0170-0

    Article  Google Scholar 

  • Witte MK, Yuan T, Chuang PY, Platnick S, Meyer KG, Wind G, Jonsson HH (2018) MODIS retrievals of cloud effective radius in marine stratocumulus exhibit no significant bias. Geophys Res Lett 45:10,656–10,664. https://doi.org/10.1029/2018GL079325

    Article  Google Scholar 

  • Yang X, Xie X, Liu DL, Ji F, Wang L (2015) Spatial interpolation of daily rainfall data for local climate impact assessment over Greater Sydney region. Adv Met 2015. https://doi.org/10.1155/2015/563629

  • Zhang W, Brandt M, Tong X, Tian Q, Fensholt R (2018) Impacts of the seasonal distribution of rainfall on vegetation productivity across the Sahel. Biogeosciences 15(1):319–330. https://doi.org/10.5194/bg-15-319-2018

    Article  Google Scholar 

  • Zuzani PN, Ngongondo C, Mwale FD, Willems P (2019) Examining trends of hydro-meteorological extremes in the Shire River Basin in Malawi. Phys Chem Earth 112(August 2018):91–102. https://doi.org/10.1016/j.pce.2019.02.007

    Article  Google Scholar 

Download references

Acknowledgments

The acknowledgments are extended to NASA, ECMWF, VIIRS, CHIRPS, and the Department of Climate change and Meteorological Services (DCCMS) Malawi for providing the data sets used in the present study.

Funding

We acknowledge the financial support of the National Natural Science Foundation of China (Grant No 42050410321). The author (MN) also would like to acknowledge the support offered by the Nanjing University of Information Science and Technology (NUIST) and the Malawi Government through the Department of Climate Change and Meteorological Services for the support to pursue higher studies. One of the authors, KRK is grateful to the Science and Engineering Research Board (SERB), a statutory body under the Department of Science and Technology (DST), India, for providing financial grants (Grant No. SR/FST/PS-1/2018/35) scheme to the Department of Physics, KLEF.

Author information

Authors and Affiliations

Authors

Contributions

M.M.H. and M.N. designed the research. N.P.M.C., A.F., and T.B.S. collected and process the data. K.R.K., N.A., and M.L.H. reviewed and edited the manuscript. M.N. wrote the paper under the guidance of M.M.H.. All authors were actively involved in the discussion of the paper.

Corresponding author

Correspondence to Md. Mozammel Haque.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyasulu, M., Haque, M.M., Kumar, K.R. et al. The implication of atmospheric aerosols on rainfall over Malawi, Southeast Africa. Climatic Change 177, 7 (2024). https://doi.org/10.1007/s10584-023-03667-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10584-023-03667-1

Keywords

Navigation