Skip to main content

Advertisement

Log in

Spatial distributions and temporal variabilities of the recent Indian Summer Monsoon Northern Boundaries in Tibetan Plateau: analysis of outgoing longwave radiation dataset and precipitation isotopes

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

As the “Asian Water Tower” region, the Tibetan Plateau (TP) has recently experienced a series of unbalanced hydrological cycles, with significant spatial heterogeneities. Large-scale circulations or moisture sources are the key drivers of these changes. The Indian Summer Monsoon (ISM) and the Westerlies are the two main atmospheric circulations that affect the climate of the TP, and considerable attention has been paid to their precise boundaries or the northern boundaries of ISM (M-W boundaries). Nonetheless, these boundaries remain unclear, meriting further investigation. Here we present our initial attempts to delineate the spatio-temporal variabilities of M-W boundaries in the TP, using outgoing longwave radiation (OLR) dataset for 1975–2020. Ground-based precipitation isotopes (1991–2008) at 7 sites and downward shortwave radiation (srad) reanalysis (1979–2018) at 14 sites along a southwest-northeast transect in the TP are used to verify the M-W boundaries with OLR. Our principal findings are as follows: (1) the M-W boundaries are generally framed within 30°–35°N, and appear ladder-shaped from western to eastern TP; and (2) the M-W boundaries experienced significant northward (or southward) shifts in 1999–2020 and 1975–2020 (or 1975–1998), true for all grids counted and for grids in each column; and (3) both the locations and the northward shifts of M-W boundaries are verified by precipitation δ18O and srad reanalysis. These results will improve our understanding of moisture source-related hydrology and aid a more accurate comprehension of ecology or paleoclimate reconstructions in the TP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The outgoing longwave radiation (OLR) dataset analyzed during the current study are available in NOAA Physical Sciences Laboratory (NOAA PSL) (https://psl.noaa.gov/data/gridded/data.interp_OLR.html). Monthly precipitation isotopes (1991–2008) are from National Tibetan Plateau Data Center (http://data.tpdc.ac.cn). Daily precipitation isotopes at Nyalam, Lhasa, Naqu, and Tuotuohe are available from the corresponding author (xiaoyuguo@itpcas.ac.cn) on rational requests. The downward shorwave radation (srad) dataset is from China Meteorological Forcing Dataset (CMFD) and downloaded from National Tibetan Plateau Data Center (http://data.tpdc.ac.cn). The TP boundaries are downloaded at the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn).

References

  • Bai Y, Fang X, Tian Q (2012) Spatial patterns of soil n-alkane δD values on the Tibetan Plateau: implications for monsoon boundaries and paleoelevation reconstructions. J Geophys Res Atmos 117:D20. https://doi.org/10.1029/2012JD017803

    Article  Google Scholar 

  • Bell GD, Halpert MS, Ropelewski CF, Kousky VE, Douglas AV, Schnell RC, Gelman ME (1999) Climate assessment for 1998. Bull Am Meteorol Soc 80(5s):S1–S48

    Article  Google Scholar 

  • Bowen GJ (2008) Spatial analysis of the intra-annual variation of precipitation isotope ratios and its climatological corollaries. J Geophys Res Atmos 113:D5

    Article  Google Scholar 

  • Changnon SA (2000) El Niño 1997-1998: the climate event of the century. Oxford University Press

    Book  Google Scholar 

  • Cheng G, Wu T (2007) Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophys Res Earth Surf 112:F2

    Article  Google Scholar 

  • Cuo L, Zhang Y, Bohn TJ, Zhao L, Li J, Liu Q, Zhou B (2015) Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau. J Geophys Res Atmos 120(16):8276–8298

    Article  Google Scholar 

  • Ding H, Greatbatch RJ, Latif M, Park W, Gerdes R (2013) Hindcast of the 1976/77 and 1998/99 climate shifts in the Pacific. J of Climate 26(19):7650–7661

    Article  Google Scholar 

  • Eastoe CJ, Dettman DL (2016) Isotope amount effects in hydrologic and climate reconstructions of monsoon climates: implications of some long-term data sets for precipitation. Chem Geo 430:78–89

    Article  Google Scholar 

  • Feng L, Zhou T (2012) Water vapor transport for summer precipitation over the Tibetan Plateau: multidata set analysis. J Geophys Res Atmos 117:D20

    Article  Google Scholar 

  • Fox-Rabinovitz MS, Takacs LL, Govindaraju RC (2002) A variable-resolution stretched-grid general circulation model and data assimilation system with multiple areas of interest: studying the anomalous regional climate events of 1998. J Geophys Res Atmos 107(D24):ACL-12

    Article  Google Scholar 

  • Gao J (2020) Data set of δ18O stable isotopes in precipitation from Tibetan Network for Isotopes (1991-2008). National Tibetan Plateau Data Center. https://doi.org/10.11888/Geogra.tpdc.270940

    Book  Google Scholar 

  • Gao Y, Cuo L, Zhang Y (2014) Changes in moisture flux over the Tibetan Plateau during 1979-2011 and possible mechanisms. J of clim 27(5):1876–1893

    Article  Google Scholar 

  • Groning M, Lutz HO, Roller-Lutz Z, Kralik M, Gourcy L, Poltenstein L (2012) A simple rain collector preventing water re-evaporation dedicated for delta O-18 and delta H-2 analysis of cumulative precipitation samples. J of Hydro 448:195–200

    Article  Google Scholar 

  • Gruber A, Winston JS (1978) Earth-atmosphere radiative heating based on Noaa Scanning Radiometer Measurements. Bull Am Meteorol Soc 59(12):1570–1573

    Article  Google Scholar 

  • Guimberteau M, Laval K, Perrier A, Polcher J (2012) Global effect of irrigation and its impact on the onset of the Indian summer monsoon. Clim Dyn 39(6):1329–1348

    Article  Google Scholar 

  • Guo X (2016) Observations of stable oxygen and hydrogen isotopes in river waters and runoff simulations at a typical watershed in the western Tibetan Plateau, China (In Chinese). Ph. D thesis on Physical Geography of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

    Google Scholar 

  • Guo X, Tian L (2022) Spatial patterns and possible mechanisms of precipitation changes in recent decades over and around the Tibetan Plateau in the context of intense warming and weakening winds. Clim Dynam 59(7-8):2081–2102. https://doi.org/10.1007/s00382-022-06197-1

    Article  Google Scholar 

  • Guo D, Wang H (2013) Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981-2010. J Geophys Res Atmos 118(11):5216–5230

    Article  Google Scholar 

  • Guo X, Wang L, Tian L, Li X (2017a) Elevation-dependent reductions in wind speed over and around the Tibetan Plateau. Int J Climatol 37(2):1117–1126

    Article  Google Scholar 

  • Guo X, Tian L, Wen R, Yu W, Qu D (2017b) Controls of precipitation δ18O on the northwestern Tibetan Plateau: a case study at Ngari station. Atmos Res 189:141–151

    Article  Google Scholar 

  • He J, Yang K, Tang W, Lu H, Qin J, Chen YY, Li X (2020) The first high-resolution meteorological forcing dataset for land process studies over China. Sci Data 7:25. https://doi.org/10.1038/s41597-020-0369-y

    Article  Google Scholar 

  • Hrudya PH, Varikoden H, Vishnu R (2020) A review on the Indian summer monsoon rainfall, variability and its association with ENSO and IOD. Meteorol Atmos Phys 133:1–14

    Article  Google Scholar 

  • Immerzeel WW, Van Beek LP, Bierkens MF (2010) Climate change will affect the Asian water towers. Science 328(5984):1382–1385

    Article  Google Scholar 

  • Joswiak DR, Yao T, Wu G, Tian L, Xu B (2013) Ice-core evidence of westerly and monsoon moisture contributions in the central Tibetan Plateau. J Glaciol 59(213):56–66

    Article  Google Scholar 

  • Jouzel J, Alley RB, Cuffey KM, Dansgaard W, Grootes P, Hoffmann G, Johnsen SJ, Koster RD, Peel D, Shuman CA, Stievenard M (1997) Validity of the temperature reconstruction from water isotopes in ice cores. J Geophys Res Oceans 102(C12):26471–26487

    Article  Google Scholar 

  • Kang S, Xu Y, You Q, Flügel WA, Pepin N, Yao T (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5(1):015101

    Article  Google Scholar 

  • Kirono DG, Tapper NJ, McBride JL (1999) Documenting Indonesian rainfall in the 1997/1998 El Nino event. Phys Geogr 20(5):422–435

    Article  Google Scholar 

  • Klein JA, Harte J, Zhao XQ (2004) Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Eco Lett 7(12):1170–1179

    Article  Google Scholar 

  • Kuang X, Jiao JJ (2016) Review on climate change on the Tibetan Plateau during the last half century. J Geophys Res Atmos 121(8):3979–4007

    Article  Google Scholar 

  • Kurita N, Ichiyanagi K, Matsumoto J, Yamanaka MD, Ohata T (2009) The relationship between the isotopic content of precipitation and the precipitation amount in tropical regions. J Geochem Explor 102(3):113–122

    Article  Google Scholar 

  • Lei Y, Yao T, Bird BW, Yang K, Zhai J, Sheng Y (2013) Coherent lake growth on the central Tibetan Plateau since the 1970s: characterization and attribution. J of Hydro 483:61–67

    Article  Google Scholar 

  • Li Y, Su F, Tang Q, Gao H, Yan D, Peng H, Xiao S (2022) Contributions of moisture sources to precipitation in the major drainage basins in the Tibetan Plateau. Sci China Earth Sci 65(6):1088–1103

    Article  Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77(6):1275–1277

    Google Scholar 

  • Lin C, Yang K, Qin J, Fu R (2013) Observed coherent trends of surface and upper-air wind speed over China since 1960. J Clim 26(9):2891–2903

    Article  Google Scholar 

  • Liu X, Cheng Z, Yan L, Yin ZY (2009) Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Glob and Planet Change 68(3):164

    Article  Google Scholar 

  • Mcvicar TR, Roderick ML, Donohue RJ, Li LT, Van Niel TG, Thomas A, Grieser J, Jhajharia D, Himri Y, Mahowald NM (2012) Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J of Hydro 416:182–205

    Article  Google Scholar 

  • Meng D, Dong Q, Kong F, Yin Z, Li Y, Liu J (2020) Spatio-temporal variations of water vapor budget over the Tibetan Plateau in summer and its relationship with the Indo-Pacific Warm Pool. Atmosphere 11(8):828

    Article  Google Scholar 

  • Mölg T, Maussion F, Scherer D (2014) Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat Clim Change 4(1):68–73

    Article  Google Scholar 

  • Noska R, Misra V (2016) Characterizing the onset and demise of the Indian summer monsoon. Geophys Res Lett 43(9):4547–4554

    Article  Google Scholar 

  • Pepin N, Bradley RS, Diaz HF, Baraër M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR (2015) Elevation-dependent warming in mountain regions of the world. Nature Clim Change 5(5):424–430

    Article  Google Scholar 

  • Prasad VS, Hayashi T (2005) Onset and withdrawal of Indian summer monsoon. Geophysical res lett 32:20

    Article  Google Scholar 

  • Pritchard HD (2019) Asia’s shrinking glaciers protect large populations from drought stress. Nature 569(7758):649–654

    Article  Google Scholar 

  • Puviarasan N, Sharma AK, Ranalkar M, Giri RK (2015) Onset, advance and withdrawal of southwest monsoon over Indian subcontinent: a study from precipitable water measurement using ground based GPS receivers. J Atmos Sol Terr Phys 122:45–57

    Article  Google Scholar 

  • Risi C, Bony S, Vimeux F (2008a) Influence of convective processes on the isotopic composition (delta O-18 and delta D) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J Geophys Res Atmos 113(D19):148–227

    Article  Google Scholar 

  • Risi C, Bony S, Vimeux F, Descroix L, Ibrahim B, Lebreton E, Mamadou I, Sultan B (2008b) What controls the isotopic composition of the African monsoon precipitation? Insights from event-based precipitation collected during the 2006 AMMA field campaign. Geophys Res Lett 35(24):L24808

    Article  Google Scholar 

  • Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. Geophysic Monograph-Am Geophysic Union 78:1–1

    Google Scholar 

  • Sha Y, Ren X, Shi Z, Zhou P, Li X, Liu X (2020) Influence of the Tibetan Plateau and its northern margins on the mid-latitude Westerly Jet over Central Asia in summer. Palaeogeogr Palaeoclimatol Palaeoecol 544:109611

    Article  Google Scholar 

  • Shi Y, Yu G, Liu X, Li B, Yao T (2001) Reconstruction of the 30-40 ka BP enhanced Indian monsoon climate based on geological records from the Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol 169(1-2):69–83

    Article  Google Scholar 

  • Shukla J (1998) Predictability in the midst of chaos: A scientific basis for climate forecasting. science 282(5389):728–731

    Article  Google Scholar 

  • Song C, Huang B, Richards K, Ke L, Hien Phan V (2014) Accelerated lake expansion on the Tibetan Plateau in the 2000s: induced by glacial melting or other processes? Water Resour Res 50(4):3170–3186

    Article  Google Scholar 

  • Su F, Zhang L, Ou T, Chen D, Yao T, Tong K, Qi Y (2016) Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Global and Planet Change 136:82–95

    Article  Google Scholar 

  • Sun Z, Yuan K, Hou X, Ji K, Li CG, Wang M, Hou J (2020) Centennial-scale interplay between the Indian Summer Monsoon and the Westerlies revealed from Ngamring Co, southern Tibetan Plateau. The Holoc 30(8):1163–1173

    Article  Google Scholar 

  • Sun X, Ding Y, Li Q (2021) Interdecadal variation of the atmospheric heat source over the tibetan plateau and surrounding Asian monsoon region: impact on the northern hemisphere summer circulation. J of Meteor Res 35(2):238–257

    Article  Google Scholar 

  • Tian L, Masson-Delmotte V, Stievenard M, Yao T, Jouzel J (2001) Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J Geophys Res Atmos 106(D22):28081–28088

    Article  Google Scholar 

  • Wang N (2006) The boundary between the northern and southern Tibetan Plateau with different variations in the warm season air temperatures on the decadal time scale (In Chinese). Quaternary Sci 26(2):165–172

    Google Scholar 

  • Wang B, Xu X (1997) Northern hemisphere summer monsoon singularities and climatological intraseasonal oscillation. J of Clim 10(5):1071–1085

    Article  Google Scholar 

  • Wang Y, Liu X, Herzschuh U (2010) Asynchronous evolution of the Indian and East Asian Summer Monsoon indicated by Holocene moisture patterns in monsoonal central Asia. Earth-Sci Rev 103(3-4):135–153

    Article  Google Scholar 

  • Wang XM, Liu HJ, Zhang LW, Zhang RH (2014) Climate change trend and its effects on reference evapotranspiration at Linhe Station, Hetao Irrigation District. Water Sci and Eng 7(3):250–266

    Google Scholar 

  • Wang Z, Wu R, Zhao P, Yao SL, Jia X (2019) Formation of snow cover anomalies over the Tibetan Plateau in cold seasons. J Geophys Res Atmos 124(9):4873–4890

    Article  Google Scholar 

  • Xu K, Zhong L, Ma Y, Zou M, Huang Z (2020) A study on the water vapor transport trend and water vapor source of the Tibetan Plateau. Theor Appl Climatol 140(3):1031–1042

    Article  Google Scholar 

  • Yang K, He J (2019) China meteorological forcing dataset (1979-2018). National Tibetan Plateau Data Center. https://doi.org/10.11888/AtmosphericPhysics.tpe.249369

    Book  Google Scholar 

  • Yang K, He J, Tang W, Qin J, Cheng CC (2010) On downward shortwave and longwave radiations over high altitude regions: observation and modeling in the Tibetan Plateau. Agric For Meteorol 150(1):38–46

    Article  Google Scholar 

  • Yang K, Ye B, Zhou D, Wu B, Foken T, Qin J, Zhou Z (2011) Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim change 109(3-4):517–534

    Article  Google Scholar 

  • Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Glob Planet Change 112:79–91

    Article  Google Scholar 

  • Yang R, Zhu L, Wang J, Ju J, Ma Q, Turner F, Guo Y (2017) Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013. Clim Change 140(3-4):621–633

    Article  Google Scholar 

  • Yao TD, Thompson L, Yang W, Yu WS, Gao Y, Guo XJ, Yang XX, Duan KQ, Zhao HB, Xu BQ, Pu JC, Lu AX, Xiang Y, Kattel DB, Joswiak D (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature clim change 2(9):663–667

    Article  Google Scholar 

  • Yao TD, Masson-Delmotte V, Gao J, Yu WS, Yang XX, Risi C, Sturm C, Werner M, Zhao HB, He Y, Ren W, Tian LD, Shi CM, Hou SG (2013) A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev of Geophysi 51(4):525–548

    Article  Google Scholar 

  • Yao T, Piao S, Shen M, Gao J, Yang W, Zhang G, Lei Y, Gao Y, Zhu L, Xu B, Yu W, Li S (2017) Chained impacts on modern environment of interaction between Westerlies and Indian Monsoon on Tibetan Plateau (In Chinese). Bull Chin Acad Sci 32(9):976–984. https://doi.org/10.16418/j.issn.1000-3045.2017.09.007

    Article  Google Scholar 

  • Yu W, Yao T, Thompson LG, Jouzel J, Zhao H, Xu B, Jing Z, Wang N, Wu G, Ma Y, Gao J (2021) Temperature signals of ice core and speleothem isotopic records from Asian monsoon region as indicated by precipitation δ18O. Earth Planet Sci Lett. 554:116665

    Article  Google Scholar 

  • Zhang Y (2019) Integration dataset of Tibet Plateau boundary. National Tibetan Plateau Data Center. https://doi.org/10.11888/Geogra.tpdc.270099

    Book  Google Scholar 

  • Zhang C (2020) Moisture source assessment and the varying characteristics for the Tibetan Plateau precipitation using TRMM. Environ Res Lett 15(10):104003

    Article  Google Scholar 

  • Zhang X, Ren Y, Yin ZY, Lin Z, Zheng D (2009) Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971-2004. J Geophys Res Atmos 114:D15

    Article  Google Scholar 

  • Zhang G, Yao T, Xie H, Kang S, Lei Y (2013) Increased mass over the Tibetan Plateau: from lakes or glaciers? Geophys Res Lett 40(10):2125–2130

    Article  Google Scholar 

  • Zhang C, Tang Q, Chen D (2017a) Recent changes in the moisture source of precipitation over the Tibetan Plateau. J of Clim 30(5):1807–1819

    Article  Google Scholar 

  • Zhang GQ, Yao TD, Shum CK, Yi S, Yang K, Xie HJ, Feng W, Bolch T, Wang L, Behrangi A, Zhang HB, Wang WC, Xiang Y, Yu JY (2017b) Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys Res Lett 44(11):5550–5560

    Article  Google Scholar 

  • Zhang X, Xu B, Günther F, Witt R, Wang M, Xie Y, Zhao H, Li J, Gleixner G (2017c) Rapid northward shift of the Indian Monsoon on the Tibetan Plateau at the end of the Little Ice Age. J Geophys Res Atmos 122(17):9262–9279

    Article  Google Scholar 

  • Zhang C, Tang Q, Chen D, van der Ent RJ, Liu X, Li W, Haile GG (2019a) Moisture source changes contributed to different precipitation changes over the northern and southern Tibetan Plateau. J Hydrometeorol 20(2):217–229

    Article  Google Scholar 

  • Zhang T, Zhang YS, Gun YH, Ma N, Dai D, Song HT, Qu DM, Gao HF (2019b) Controls of stable isotopes in precipitation on the central Tibetan Plateau: a seasonal perspective. Quater int 513:66–79

    Article  Google Scholar 

  • Zhang Y, Huang W, Zhong D (2019c) Major moisture pathways and their importance to rainy season precipitation over the Sanjiangyuan Region of the Tibetan Plateau. J of Clim 32(20):6837–6857

    Article  Google Scholar 

  • Zhang YL, Li BY, Liu LS, Zheng D (2021) Redetermine the region and boundaries of Tibetan Plateau. Geograph Res 40(6):1543–1553

    Google Scholar 

Download references

Acknowledgements

We should like to thank the NOAA Physical Sciences Laboratory (NOAA PSL) for access to the OLR dataset used in this analysis (https://psl.noaa.gov/data/gridded/data.interp_OLR.html). Monthly precipittaion isotopes (1991–2008) and the TP boundaries are from National Tibetan Plateau Data Center (http://data.tpdc.ac.cn). The srad dataset is from China Meteorological Forcing Dataset (CMFD) and downloaded from National Tibetan Plateau Data Center (http://data.tpdc.ac.cn). Sincerely thanks our senior fellow apprentices such as Zhongfang Liu, Wusheng Yu, Jianggpeng Cui, and Rong Wen, for continious collections of precipitation isotopes at Nyalam, Lhasa, Naqu, and Tuotuohe. We would also like to express our sincere thanks to engineer Dongmeiqu, who helps us when testing the water samples, and thank Edward A Derbyshire, who helps us improve the English.

Funding

This research is funded by the National Natural Science Foundation of China (Grant Nos. 41988101, 42071090, 42271143, 41701080).

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute to the study conception and design. Material preparation, data collection, and analysis are performed by Xiaoyu Guo and Lide Tian. The first draft of the manuscript is written by Xiaoyu Guo. All authors comment on previous versions of the manuscript. All authors read and approve the final manuscript.

Corresponding author

Correspondence to Xiaoyu Guo.

Ethics declarations

Competing Interests

The authors declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Wang, L. & Tian, L. Spatial distributions and temporal variabilities of the recent Indian Summer Monsoon Northern Boundaries in Tibetan Plateau: analysis of outgoing longwave radiation dataset and precipitation isotopes. Climatic Change 176, 43 (2023). https://doi.org/10.1007/s10584-023-03522-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10584-023-03522-3

Keywords

Navigation