Skip to main content
Log in

Contributions of moisture sources to precipitation in the major drainage basins in the Tibetan Plateau

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Tracking and quantifying the moisture sources of precipitation in different drainage basins in the Tibetan Plateau (TP) help to reveal basin-scale hydrological cycle characteristics under the interactions between the westerlies and Indian summer monsoon (ISM) systems and to improve our understanding on the mechanisms of water resource changes in the ‘Asian Water Tower’ under climate changes. Based on a Eulerian moisture tracking model (WAM-2) and three atmospheric reanalysis products (ERA-I, MERRA-2, and JRA-55), the contributions of moisture sources to the precipitation in six major sub-basins in the TP were tracked during an approximately 35-year period (1979/1980–2015). The results showed that in the upper Indus (UI), upper Tarim River (UT), and Qaidam Basin (QB), the moisture sources mainly extended westward along the mid-latitude westerlies to the western part of the Eurasian continent. In contrast, in the Yarlung Zangbo River Basin (YB), inner TP (ITP), and the source area of three eastern rivers (TER, including the Nujiang River, Lancang River, and Yangtze River), the moisture sources extended both westward and southward, but mainly southward along the ISM. In winter and spring, all of the sub-basins were dominated by western moisture sources. In summer, the western sources migrated northward with the zonal movement of the westerlies, and simultaneously the southern sources of the YB, ITP, and TER expanded largely toward the Indian Ocean along the ISM. In autumn, the moisture sources of the UI, UT, and QB shrank to the western sources, and the moisture sources of the YB, ITP, and TER shrank to the central-southern TP and the Indian subcontinent. By quantifying the moisture contributions from multiple sources, we found that the terrestrial moisture dominated in all of the sub-basins, particularly in the UT and QB (62–73%). The oceanic contributions were relatively high in the UI (38–42%) and YB (38–41%). In winter, evaporation from the large western water bodies (such as the Mediterranean, Red Sea, and Persian Gulf) was significantly higher than that from the continental areas. This contributed to the peak (valley) values of the oceanic (terrestrial) moisture contributions to all of the sub-basins. In summer, the terrestrial moisture contributions to the UI, UT, and QB reached their annual maximum, but the abundant oceanic moisture transported by the ISM restrained the appearance of land source contribution peaks in the YB, ITP, and TER, resulting in almost equal moisture contributions in the YB from the ocean and land.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An W, Hou S, Zhang Q, Zhang W, Wu S, Xu H, Pang H, Wang Y, Liu Y. 2017. Enhanced recent local moisture recycling on the northwestern Tibetan Plateau deduced from ice core deuterium excess records. J Geophys Res-Atmos, 122: 12,541–12,556

    Google Scholar 

  • Aumann H H, Chahine M T, Gautier C, Goldberg M D, Kalnay E, McMillin L M, Revercomb H, Rosenkranz P W, Smith W L, Staelin D H, Strow L L, Susskind J. 2003. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans Geosci Remote Sens, 41: 253–264

    Article  Google Scholar 

  • Bao X, Zhang F. 2013. Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J Clim, 26: 206–214

    Article  Google Scholar 

  • Bershaw J, Penny S M, Garzione C N. 2012. Stable isotopes of modern water across the Himalaya and eastern Tibetan Plateau: Implications for estimates of paleoelevation and paleoclimate. J Geophys Res, 117: D02110

    Google Scholar 

  • Bosilovich M G, Robertson F R, Takacs L, Molod A, Mocko D. 2017. Atmospheric water balance and variability in the MERRA-2 reanalysis. J Clim, 30: 1177–1196

    Article  Google Scholar 

  • Brubaker K L, Entekhabi D, Eagleson P S. 1993. Estimation of continental precipitation recycling. J Clim, 6: 1077–1089

    Article  Google Scholar 

  • Cai Z, Tian L. 2016. Atmospheric controls on seasonal and interannual variations in the precipitation isotope in the East Asian monsoon region. J Clim, 29: 1339–1352

    Article  Google Scholar 

  • Chen B, Xu X D, Yang S, Zhang W. 2012. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau. Theor Appl Climatol, 110: 423–435

    Article  Google Scholar 

  • Chen B, Zhang W, Yang S, Xu X D. 2019. Identifying and contrasting the sources of the water vapor reaching the subregions of the Tibetan Plateau during the wet season. Clim Dyn, 53: 6891–6907

    Article  Google Scholar 

  • Cuo L, Zhang Y, Zhu F, Liang L. 2014. Characteristics and changes of streamflow on the Tibetan Plateau: A review. J Hydrol-Regional Studies, 2: 49–68

    Article  Google Scholar 

  • Curio J, Maussion F, Scherer D. 2015. A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau. Earth Syst Dynam, 6: 109–124

    Article  Google Scholar 

  • Curio J, Scherer D. 2016. Seasonality and spatial variability of dynamic precipitation controls on the Tibetan Plateau. Earth Syst Dynam, 7: 767–782

    Article  Google Scholar 

  • Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer P, Bechtold P, Beljaars A C M, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A P, Monge-Sanz B M, Morcrette J J, Park B K, Peubey C, de Rosnay P, Tavolato C, Thépaut J N, Vitart F. 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc, 137: 553–597

    Article  Google Scholar 

  • Duerinck H M, Van der Ent R J, van de Giesen N C, Schoups G, Babovic V, Yeh P J F. 2016. Observed soil moisture-precipitation feedback in Illinois: A systematic analysis over different scales. J Hydrometeorol, 17: 1645–1660

    Article  Google Scholar 

  • Feng L, Zhou T. 2012. Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis. J Geophys Res, 117: 2156–2202

    Google Scholar 

  • Fu R, Hu Y, Wright J S, Jiang J H, Dickinson R E, Chen M, Filipiak M, Read W G, Waters J W, Wu D L. 2006a. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc Natl Acad Sci USA, 103: 5664–5669

    Article  Google Scholar 

  • Fu Y, Liu G, Wu G, Yu R, Xu Y, Wang Y, Li R, Liu Q. 2006b. Tower mast of precipitation over the central Tibetan Plateau summer. Geophys Res Lett, 33: L05802

    Google Scholar 

  • Gao J, Masson-Delmotte V, Risi C, He Y, Yao T. 2013. What controls precipitation δ18 O in the southern Tibetan Plateau at seasonal and intraseasonal scales? A case study at Lhasa and Nyalam. Tellus B-Chem Phys Meteor, 65: 21043

    Article  Google Scholar 

  • Gao Y, Cuo L, Zhang Y. 2014. Changes in moisture flux over the Tibetan Plateau during 1979–2011 and possible mechanisms. J Clim, 27: 1876–1893

    Article  Google Scholar 

  • Gao Y, Chen F, Miguez-Macho G, Li X. 2020. Understanding precipitation recycling over the Tibetan Plateau using tracer analysis with WRF. Clim Dyn, 55: 2921–2937

    Article  Google Scholar 

  • Gardelle J, Berthier E, Arnaud Y. 2012. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat Geosci, 5: 322–325

    Article  Google Scholar 

  • Gelaro R, McCarty W, Suárez M J, Todling R, Molod A, Takacs L, Randles C A, Darmenov A, Bosilovich M G, Reichle R, Wargan K, Coy L, Cullather R, Draper C, Akella S, Buchard V, Conaty A, da Silva A M, Gu W, Kim G K, Koster R, Lucchesi R, Merkova D, Nielsen J E, Partyka G, Pawson S, Putman W, Rienecker M, Schubert S D, Sienkiewicz M, Zhao B. 2017. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J Clim, 30: 5419–5454

    Article  Google Scholar 

  • Gimeno L, Stohl A, Trigo R M, Dominguez F, Yoshimura K, Yu L, Drumond A, Durán-Quesada A M, Nieto R. 2012. Oceanic and terrestrial sources of continental precipitation. Rev Geophys, 50: RG4003

    Article  Google Scholar 

  • Guo Y, Wang C. 2014. Trends in precipitation recycling over the Qinghai-Xizang Plateau in last decades. J Hydrol, 517: 826–835

    Article  Google Scholar 

  • Harada Y, Kamahori H, Kobayashi C, Endo H, Kobayashi S, Ota Y, Onoda H, Onogi K, Miyaoka K, Takahashi K. 2016. The JRA-55 Reanalysis: Representation of atmospheric circulation and climate variability. J Meteorol Soc Jpn, 94: 269–302

    Article  Google Scholar 

  • Held I M, Soden B J. 2000. Water vapor feedback and global warming. Annu Rev Energy Environ, 25: 441–475

    Article  Google Scholar 

  • Hren M T, Bookhagen B, Blisniu P M, Booth A L, Chamberlain C P. 2009. δ18O and δD of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions. Earth Planet Sci Lett, 288: 20–32

    Article  Google Scholar 

  • Hua L, Zhong L, Ke Z. 2015. Characteristics of the precipitation recycling ratio and its relationship with regional precipitation in China. Theor Appl Climatol, 127: 513–531

    Article  Google Scholar 

  • Hua L, Zhong L, Ma Z. 2017. Decadal transition of moisture sources and transport in northwestern China during summer from 1982 to 2010. J Geophys Res-Atmos, 122: 12,522–12,540

    Article  Google Scholar 

  • Huang W, Qiu T, Yang Z, Lin D, Wright J S, Wang B, He X. 2018. On the formation mechanism for wintertime extreme precipitation events over the southeastern Tibetan Plateau. J Geophys Res-Atmos, 123: 12,692–12,714

    Google Scholar 

  • Jia S, Zhu W, Lü A, Yan T. 2011. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Remote Sens Environ, 115: 3069–3079

    Article  Google Scholar 

  • Keys P W, Barnes E A, Van der Ent R J, Gordon L J. 2014. Variability of moisture recycling using a precipitationshed framework. Hydrol Earth Syst Sci, 18: 3937–3950

    Article  Google Scholar 

  • Khan A, Richards K S, Parker G T, McRobie A, Mukhopadhyay B. 2014. How large is the Upper Indus Basin? The pitfalls of auto-delineation using DEMs. J Hydrol, 509: 442–453

    Article  Google Scholar 

  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K. 2015. The JRA-55 reanalysis: General specifications and basic characteristics. J Meteorol Soc Jpn, 93: 5–48

    Article  Google Scholar 

  • Kumar O, Ramanathan A, Bakke J, Kotlia B S, Shrivastava J P, Kumar P, Sharma R, Kumar P. 2021. Role of Indian Summer Monsoon and Westerlies on glacier variability in the Himalaya and East Africa during Late Quaternary: Review and new data. Earth-Sci Rev, 212: 103431

    Article  Google Scholar 

  • Kurita N, Yamada H. 2008. The role of local moisture recycling evaluated using stable isotope data from over the middle of the Tibetan Plateau during the monsoon season. J Hydrometeorol, 9: 760–775

    Article  Google Scholar 

  • Le Marshall J, Jung J, Derber J, Chahine M, Treadon R, Lord S J, Goldberg M, Wolf W, Liu H C, Joiner J, Woollen J, Todling R, van Delst P, Tahara Y. 2006. Improving global analysis and forecasting with AIRS. Bull Amer Meteorol Soc, 87: 891–895

    Article  Google Scholar 

  • Lei Y, Yao T, Bird B W, Yang K, Zhai J, Sheng Y. 2013. Coherent lake growth on the central Tibetan Plateau since the 1970s: Characterization and attribution. J Hydrol, 483: 61–67

    Article  Google Scholar 

  • Li X, Wang L, Chen D, Yang K, Wang A. 2014. Seasonal evapotranspiration changes (1983–2006) of four large basins on the Tibetan Plateau. J Geophys Res-Atmos, 119: 13,079–13,095

    Article  Google Scholar 

  • Li Y, Su F, Chen D, Tang Q. 2019. Atmospheric Water Transport to the Endorheic Tibetan Plateau and Its Effect on the Hydrological Status in the Region. J Geophys Res-Atmos, 124: 12,864–12,881

    Article  Google Scholar 

  • Liu S, Yao X, Guo W, Xu J, Shangguan D, Wei J, Bao W, Wu L. 2015. The contemporary glaciers in China based on the Second Chinese Glacier Inventory (in Chinese). Acta Geogr Sin, 70: 3–16

    Google Scholar 

  • Liu X, Liu Y, Wang X, Wu G. 2020. Large-Scale Dynamics and Moisture Sources of the Precipitation Over the Western Tibetan Plateau in Boreal Winter. J Geophys Res-Atmos, 125: E2019JD032133

    Google Scholar 

  • Lorenz C, Kunstmann H. 2012. The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J Hydrometeorol, 13: 1397–1420

    Article  Google Scholar 

  • Ma Y, Lu M, Bracken C, Chen H. 2020. Spatially coherent clusters of summer precipitation extremes in the Tibetan Plateau: Where is the moisture from? Atmos Res, 237: 104841

    Article  Google Scholar 

  • Maussion F, Scherer D, Mölg T, Collier E, Curio J, Finkelnburg R. 2014. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high Asia reanalysis. J Clim, 27: 1910–1927

    Article  Google Scholar 

  • Mölg T, Maussion F, Scherer D. 2014. Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat Clim Change, 4: 68–73

    Article  Google Scholar 

  • Pan C, Zhu B, Gao J, Kang H, Zhu T. 2018. Quantitative identification of moisture sources over the Tibetan Plateau and the relationship between thermal forcing and moisture transport. Clim Dyn, 52: 181–196

    Article  Google Scholar 

  • Qiu T, Huang W, Wright J S, Lin Y, Lu P, He X, Yang Z, Dong W, Lu H, Wang B. 2019. Moisture sources for wintertime intense precipitation events over the three snowy subregions of the Tibetan Plateau. J Geophys Res-Atmos, 124: 12708–12725

    Article  Google Scholar 

  • Qiu X, Zhang M, Dong Z, Wang S, Yu X, Meng H, Che C. 2021. Contribution of recycled moisture to precipitation in Northeastern Tibetan Plateau: A case study based on Bayesian estimation. Atmosphere, 12: 731

    Article  Google Scholar 

  • Roxy M K, Ritika K, Terray P, Murtugudde R, Ashok K, Goswami B N. 2015. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat Commun, 6: 7423

    Article  Google Scholar 

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M. 2018. GPCC full data monthly product version 2018 at 1.0°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historical data. Global Precipitation Climatology Centre (GPCC)

  • Stein A F, Draxler R R, Rolph G D, Stunder B J B, Cohen M D, Ngan F. 2016. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc, 96: 2059–2077

    Article  Google Scholar 

  • Stohl A, Forster C, Frank A, Seibert P, Wotawa G. 2005. Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos Chem Phys, 5: 2461–2474

    Article  Google Scholar 

  • Sugimoto S, Ueno K, Sha W. 2008. Transportation of water vapor into the Tibetan Plateau in the case of a passing synoptic-scale trough. J Meteorol Soc Jpn, 86: 935–949

    Article  Google Scholar 

  • Sun B, Wang H. 2014. Moisture sources of semiarid grassland in China using the Lagrangian particle model FLEXPART. J Clim, 27: 2457–2474

    Article  Google Scholar 

  • Sun H, Su F, Huang J, Yao T, Luo Y, Chen D. 2020. Contrasting precipitation gradient characteristics between westerlies and monsoon dominated upstream river basins in the Third Pole (in Chinese). Chin Sci Bull, 65: 91–104

    Article  Google Scholar 

  • Sun J, Yang K, Guo W, Wang Y, He J, Lu H. 2020. Why has the inner Tibetan Plateau become wetter since the mid-1990s? J Clim, 33: 8507–8522

    Article  Google Scholar 

  • Tang Q, Liu X, Zhou Y, Wang J, Yun X. 2019. Cascading Impacts of Asian Water Tower Change on Downstream Water Systems (in Chinese). Bull Chin Acad Sci, 34: 1306–1312

    Google Scholar 

  • Tang Q, Liu Y, Zhang C, Su F, Li Y, Gao Y, Li W, Chen D. 2020. Research progress on moisture source change of precipitation over the Tibetan Plateau and its surrounding areas (in Chinese). Trans Atmos Sci, 43: 1002–1009

    Google Scholar 

  • Tian L, Masson-Delmotte V, Stievenard M, Yao T, Jouzel J. 2001a. Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J Geophys Res, 106: 28081–28088

    Article  Google Scholar 

  • Tian L, Yao T, Numaguti A, Duan K. 2001b. Relation between stable isotope in monsoon precipitation in southern Tibetan Plateau and moisture transport history. Sci China Ser D-Earth Sci, 44: 267–274

    Article  Google Scholar 

  • Tian L, Yao T, Yu W, Zhang X, Pu J. 2006. Stable isotopes of precipitatiob and ice core on the Tibetan Plateau and moisture transport (in Chinese). Quat Sci, 26: 145–152

    Google Scholar 

  • Tian L, Yao T, Macclune K, White J W C, Schilla A, Vaughn B, Vachon R, Ichiyanagi K. 2007. Stable isotopic variations in west China: A consideration of moisture sources. J Geophys Res, 112: 1984–2012

    Google Scholar 

  • Tuinenburg O A, Staal A. 2020. Tracking the global flows of atmospheric moisture and associated uncertainties. Hydrol Earth Syst Sci, 24: 2419–2435

    Article  Google Scholar 

  • Tong K, Su F, Yang D, Zhang L, Hao Z. 2014. Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. Int J Climatol, 34: 265–285

    Article  Google Scholar 

  • Trenberth K E, Smith L, Qian T, Dai A, Fasullo J. 2007. Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeorol, 8: 758–769

    Article  Google Scholar 

  • Trenberth K E, Fasullo J T, Mackaro J. 2011. Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J Clim, 24: 4907–4924

    Article  Google Scholar 

  • Van der Ent R J, Savenije H H G, Schaefli B, Steele-Dunne S C. 2010. Origin and fate of atmospheric moisture over continents. Water Resour Res, 46: W09525

    Article  Google Scholar 

  • Van der Ent R J, Tuinenburg O A, Knoche H R, Kunstmann H, Savenije H H G. 2013. Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking? Hydrol Earth Syst Sci, 17: 4869–4884

    Article  Google Scholar 

  • Van der Ent R J. 2014. A new view on the hydrological cycle over continents. Dissertation for Doctoral Degree. Netherlands: Delft University of Technology. 96

    Google Scholar 

  • Van der Ent R J, Tuinenburg O A. 2017. The residence time of water in the atmosphere revisited. Hydrol Earth Syst Sci, 21: 779–790

    Article  Google Scholar 

  • Wang A, Zeng X. 2012. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J Geophys Res, 117: D05102

    Google Scholar 

  • Wang X, Pang G, Yang M. 2018. Precipitation over the Tibetan Plateau during recent decades: A review based on observations and simulations. Int J Climatol, 38: 1116–1131

    Article  Google Scholar 

  • Wang Z, Duan A, Yang S. 2019. Potential regulation on the climatic effect of Tibetan Plateau heating by tropical air-sea coupling in regional models. Clim Dyn, 52: 1685–1694

    Article  Google Scholar 

  • Wang Z, Duan A, Yang S, Ullah K. 2016. Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau. J Geophys Res-Atmos, 122: 614–630

    Article  Google Scholar 

  • Wu G, Duan A, Liu Y, Mao J, Ren R, Bao Q, He B, Liu B, Hu W. 2015. Tibetan Plateau climate dynamics: Recent research progress and outlook. Natl Sci Rev, 2: 100–116

    Article  Google Scholar 

  • Xu X, Chen L, Wang X, Miao Q, Tao S. 2004. Moisture transport source/sink structure of the Meiyu rain belt along the Yangtze River valley. Chin Sci Bull, 49: 181

    Article  Google Scholar 

  • Xu X, Chen L. 2006. Advances of the Study on Tibetan Plateau Experiment of Atmospheric Sciences (in Chinese). J Appl Meteorol Sci, 17: 756–772

    Google Scholar 

  • Xu X, Lu C, Shi X, Gao S. 2008. World water tower: An atmospheric perspective. Geophys Res Lett, 35: L20815

    Article  Google Scholar 

  • Xu X, Dong L, Zhao Y, Wang Y. 2019. Effect of the Asian Water Tower over the Qinghai-Tibet Plateau and the characteristics of atmospheric water circulation. Chin Sci Bull, 64: 2830–2841

    Article  Google Scholar 

  • Xu X, Zhao T, Lu C, Guo Y, Chen B, Liu R, Li Y, Shi X. 2014a. An important mechanism sustaining the atmospheric “water tower” over the Tibetan Plateau. Atmos Chem Phys, 14: 11287–11295

    Article  Google Scholar 

  • Xu X, Zhao T, Lu C, Shi X. 2014b. Characteristics of the water cycle in the atmosphere over the Tibetan Plateau (in Chinese). Acta Meteorol Sin, 72: 1079–1095

    Google Scholar 

  • Xu Y W, Kang S C, Zhang Y L, Zhang Y J. 2011. A method for estimating the contribution of evaporative vapor from Nam Co to local atmospheric vapor based on stable isotopes of water bodies. Chin Sci Bull, 56: 1511–1517

    Article  Google Scholar 

  • Xu Y, Gao Y. 2019. Quantification of evaporative sources of precipitation and its changes in the Southeastern Tibetan Plateau and Middle Yangtze River Basin. Atmosphere, 10: 428

    Article  Google Scholar 

  • Xu Y, Gao Y. 2020. Analysis of Precipitation Recycling Ratio Based on GLDAS and Reanalysis Data over the Qinghai-Tibetan Plateau (in Chinese). Plateau Meteorol, 39: 499–510

    Google Scholar 

  • Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y. 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob Planet Change, 112: 79–91

    Article  Google Scholar 

  • Yang M, Yao T, Wang H, Tian L, Gou X. 2006. Estimating the criterion for determining water vapour sources of summer precipitation on the northern Tibetan Plateau. Hydrol Process, 20: 505–513

    Article  Google Scholar 

  • Yang S, Zhang W, Chen B, Xu X D, Zhao R. 2020. Remote moisture sources for 6-hour summer precipitation over the Southeastern Tibetan Plateau and its effects on precipitation intensity. Atmos Res, 236: 104803

    Article  Google Scholar 

  • Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B, Pu J, Lu A, Xiang Y, Kattel D B, Joswiak D. 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change, 2: 663–667

    Article  Google Scholar 

  • Yao T, Masson-Delmotte V, Gao J, Yu W, Yang X, Risi C, Sturm C, Werner M, Zhao H, He Y, Ren W, Tian L, Shi C, Hou S. 2013. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev Geophys, 51: 525–548

    Article  Google Scholar 

  • Yao T, Chen F, Cui P, Ma Y, Xu B, Zhu L, Zhang F, Wang W, Ai L, Yang X. 2017a. From Tibetan Plateau to Third Pole and Pan-Third Pole (in Chinese). Bull Chin Acad Sci, 32: 924–931

    Google Scholar 

  • Yao T, Piao S, Shen M, Gao J, Yang W, Zhang G, Lei Y, Gao Y, Zhu L, Xu B. 2017b. Chained impacts on modern environment of interaction between Westerlies and Indian Monsoon on Tibetan Plateau (in Chinese). Bull Chin Acad Sci, 32: 976–984

    Google Scholar 

  • Yao T, Xue Y, Chen D, Chen F, Thompson L, Cui P, Koike T, Lau W K M, Lettenmaier D, Mosbrugger V, Zhang R, Xu B, Dozier J, Gillespie T, Gu Y, Kang S, Piao S, Sugimoto S, Ueno K, Wang L, Wang W, Zhang F, Sheng Y, Guo W, Ailikun W, Yang X, Ma Y, Shen S S P, Su Z, Chen F, Liang S, Liu Y, Singh V P, Yang K, Yang D, Zhao X, Qian Y, Zhang Y, Li Q. 2018. Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary Approach with observations, modeling, and analysis. Bull Am Meteorol Soc, 100: 423–444

    Article  Google Scholar 

  • You Q, Min J, Zhang W, Pepin N, Kang S. 2015. Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Clim Dyn, 45: 791–806

    Article  Google Scholar 

  • Yu W, Yao T, Tian L, Li Z, Sun W, Wang Y. 2006. Relationships between δ18O in summer precipitation and temperature and moisture trajectories at Muztagata, western China. Sci China Ser D-Earth Sci, 49: 27–35

    Article  Google Scholar 

  • Zemp D C, Schleussner C F, Barbosa H M J, Van der Ent R J, Donges J F, Heinke J, Sampaio G, Rammig A. 2014. On the importance of cascading moisture recycling in South America. Atmos Chem Phys, 14: 13337–13359

    Article  Google Scholar 

  • Zhang C, Tang Q, Chen D. 2017a. Recent changes in the moisture source of precipitation over the Tibetan Plateau. J Clim, 30: 1807–1819

    Article  Google Scholar 

  • Zhang C, Tang Q, Chen D, Li L, Liu X, Cui H. 2017b. Tracing changes in atmospheric moisture supply to the drying Southwest China. Atmos Chem Phys, 17: 10383–10393

    Article  Google Scholar 

  • Zhang C, Tang Q, Chen D, Van der Ent R J, Liu X, Li W, Haile G G. 2019. Moisture source changes contributed to different precipitation changes over the northern and southern Tibetan Plateau. J Hydrometeorol, 20: 217–229

    Article  Google Scholar 

  • Zhang C. 2020. Moisture source assessment and the varying characteristics for the Tibetan Plateau precipitation using TRMM. Environ Res Lett, 15: 104003

    Article  Google Scholar 

  • Zhang G, Yao T, Xie H, Zhang K, Zhu F. 2014. Lakes’ state and abundance across the Tibetan Plateau. Chin Sci Bull, 59: 3010–3021

    Article  Google Scholar 

  • Zhang H, Xu Y, Gao Y. 2020. Simulation study on precipitation recycling ratio in the Tibetan Plateau from 1982 to 2005 (in Chinese). Adv Earth Sci, 35: 297–307

    Google Scholar 

  • Zhang Y, Huang W, Zhong D. 2019. Major moisture pathways and their importance to rainy season precipitation over the Sanjiangyuan Region of the Tibetan Plateau. J Clim, 32: 6837–6857

    Article  Google Scholar 

  • Zhao H, Xu B, Yao T, Wu G, Lin S, Gao J, Wang M. 2012. Deuterium excess record in a southern Tibetan ice core and its potential climatic implications. Clim Dyn, 38: 1791–1803

    Article  Google Scholar 

  • Zhao T, Zhao J, Hu H, Ni G. 2016. Source of atmospheric moisture and precipitation over China’s major river basins. Front Earth Sci, 10: 159–170

    Article  Google Scholar 

  • Zhao Y, Zhou T. 2021. Interannual variability of precipitation recycle ratio over the Tibetan Plateau. Geophys Res Atmos, 126: e33733

    Google Scholar 

  • Zhao Y, Zhou T, Li P, Furtado K, Zou L. 2021. Added value of a convection permitting model in simulating atmospheric water cycle over the Asian Water Tower. Geophys Res Atmos, 126: e34788

    Google Scholar 

  • Zhou C, Tang X, Li Y. 2012. Overview of the research on the water vapor and water vapor transport over the Tibetan Plateau and its surroundings (in Chinese). Plateau Mount Meteorol Res, 32: 76–83

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (Grant Nos. 2019QZKK0201 & 2019QZKK020705), the National Natural Science Foundation of China (Grant Nos. 41988101 & 41871057), and the “Strategic Priority Research Program” of Chinese Academy of Sciences (Grant No. XDA20060202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengge Su.

Supplementary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Su, F., Tang, Q. et al. Contributions of moisture sources to precipitation in the major drainage basins in the Tibetan Plateau. Sci. China Earth Sci. 65, 1088–1103 (2022). https://doi.org/10.1007/s11430-021-9890-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9890-6

Keywords

Navigation