Alexandratos N, Bruinsma J (2012) WORLD AGRICULTURE TOWARDS 2030 / 2050 The 2012 Revision. In Food and Agriculture Organization of the United Nations (Issue 12). https://doi.org/10.1016/S0264-8377(03)00047-4
Amigo I (2020) When will the Amazon hit a tipping point? Nature. https://doi.org/10.1038/d41586-020-00508-4
Article
Google Scholar
ANP (2017) Boletim Mensal do Biodiesel - Fevereiro 2017: Vol. d. https://www.gov.br/anp/pt-br/assuntos/producao-e-fornecimento-debiocombustiveis/biodiesel/if/bmb/2017/boletim-biodiesel-02.pdf. Accessed 27 Dec 2021.
ANP (2018) Percentual obrigatório de biodiesel passa para 10%. Associacao Nacional Do Petroleo e Biocombustiveis (ANP) Website.
https://www.gov.br/anp/pt-br/canais_atendimento/imprensa/noticias-comunicados/percentual-obrigatorio-de-biodiesel-passa-para-10. Accessed 27 Dec 2021.
ANP (2021) Mistura de biodiesel ao diesel passa a ser de 13% a partir de hoje. Associacao Nacional Do Petroleo e Biocombustiveis (ANP) Website. https://www.gov.br/anp/pt-br/canais_atendimento/imprensa/noticias-comunicados/mistura-de-biodiesel-ao-diesel-passa-a-ser-de-13-apartir-de-hoje-1-3. Accessed 27 Dec 2021.
Assad E, Pavão E, de Jesus M, Martins SC (2015) Invertendo o sinal de carbono da agropecuária brasileira. Uma estimativa do potencial de mitigação de tecnologias do Plano ABC de 2012 a 2023. http://www.observatorioabc.com.br/relatorio-5-invertendo-o-sinal-de-carbono-da-agropecuaria-brasileira?locale=pt-br
Assunção J, Pietracci B, Souza P (2016) Fueling Development: Sugarcane Expansion Impacts in Brazil. https://www.inputbrasil.org/wp-content/uploads/2016/07/Fueling_Development_Sugarcane_Expansion_Impacts_in_Brazil_Working_Paper_CPI.pdf.pdf. Accessed 27 Dec 2021.
Bauer N, Rose SK, Fujimori S, Van Vuuren D, Weyant J, Wise M, Cui Y, Daioglou V, Gidden MJ, Kato E, Kitous A, Leblanc F, Sands RD, Sano F, Strefler J, Tsutsui J, Bibas R, Fricko O, Hasegawa T, … Muratori M (2018) Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison. Clim Change. https://doi.org/10.1007/s10584-018-2226-y
Biggs R, Raudsepp-Hearne C, Atkinson-Palombo C, Bohensky E, Boyd E, Cundill G, Fox H, Ingram S, Kok K, Spehar S, Tengö M, Timmer D, Zurek M (2007) Linking futures across scales: a dialog on multiscale scenarios. Ecol Soc 12(1). https://doi.org/10.5751/ES-02051-120117
Brasil (2017a) Meta de Redução do desmatamento no cerrado. Os planos de Prevencao e Controle do desmatamento em ambito federal. http://combateaodesmatamento.mma.gov.br/. Accessed 27 Dec 2021.
Brasil (2017b) Planos de ação para a prevenção e o controle do desmatamento. http://combateaodesmatamento.mma.gov.br/images/conteudo/Planos_ultima_fase.pdf
Byerlee D, Stevenson J, Villoria N (2014) Does intensification slow crop land expansion or encourage deforestation? Glob Food Sec 3(2):92–98. https://doi.org/10.1016/j.gfs.2014.04.001
Article
Google Scholar
Cardoso AS, Berndt A, Leytem A, Alves BJR, de Carvalho I. das NO, de Barros Soares LH, Urquiaga S, Boddey RM (2016) Impact of the intensification of beef production in Brazil on greenhouse gas emissions and land use. Agric Syst 143, 86–96. https://doi.org/10.1016/j.agsy.2015.12.007
Carvalho F, Portugal-pereira J, Koberle A, Szklo A (2016) Biojet fule in Brazil: technological routes and feedstock availability. Proceedings of the 24th European Biomass Conference & Exhibition. http://www.etaflorence.it/proceedings/
Cintas O, Berndes G, Englund O, Johnsson F (2021) Biomass and Bioenergy Geospatial supply-demand modeling of lignocellulosic biomass for electricity and biofuels in the European Union. Biom Bioenerg 144(November 2020). https://doi.org/10.1016/j.biombioe.2020.105870
Cohn AS, Mosnier A, Havlík P, Valin H, Herrero M, Schmid E, O’Hare M, Obersteiner M (2014) Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation. Proc Natl Acad Sci USA 111(20):7236–7241. https://doi.org/10.1073/pnas.1307163111
Article
Google Scholar
Conab (2017) Séries Históricas de Área Plantada, Produtividade e Produção, Relativas às Safras 1976/77 a 2015/16 de Grãos, 2001 a 2016 de Café, 2005/06 a 2016/17 de Cana-de-Açúcar. Séries Históricas. http://www.conab.gov.br/conteudos.php?a=1252&Pagina_objcmsconteudos=2#A_objcmsconteudos
Creutzig F, Ravindranath NH, Berndes G, Bolwig S, Bright R, Cherubini F, Chum H, Corbera E, Delucchi M, Faaij A, Fargione J, Haberl H, Heath G, Lucon O, Plevin R, Popp A, Robledo-Abad C, Rose S, Smith P, … Masera O (2015) Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7(5) 916–944. https://doi.org/10.1111/gcbb.12205
Daioglou V, Doelman JC, Stehfest E, Müller C, Wicke B, Faaij A, van Vuuren DP (2017) Greenhouse gas emission curves for advanced biofuel supply chains. Nat Clim Chang 7(12):920–924. https://doi.org/10.1038/s41558-017-0006-8
Article
Google Scholar
Daioglou V, Muratori M, Lamers P, Fujimori S, Kitous A, Köberle AC, Bauer N, Junginger M, Kato E, Leblanc F, Mima S, Wise M, van Vuuren DP (2020a) Implications of climate change mitigation strategies on international bioenergy trade. Clim Change 163(3):1639–1658. https://doi.org/10.1007/s10584-020-02877-1
Article
Google Scholar
Daioglou V, Rose S, Bauer N, Kitous A, Muratori M, Sano F, Fujimori S, Gidden MJ, Kato E, Keramidas K, Klein D, Leblanc F, Tsutsui J, Wise M, van Vuuren DP (2020b) Bioenergy technologies in long-run climate change mitigation: results from the EMF33 study. Clim Change 163:1603–1620
Article
Google Scholar
de Jong S, Hoefnagels R, Faaij A, Slade R, Mawhood R, Junginger M (2015) The feasibility of short term production strategies for renewable jet fuels — a comprehensive techno-economic comparison. Biofuels Bioprod Biorefin 9:778–800. https://doi.org/10.1002/bbb.1613;Biofuel,Bioprod.Bioref.9:778-800(2015)
Article
Google Scholar
De Oliveira Silva R, Barioni LG, Hall JAJ, Folegatti Matsuura M, Zanett Albertini T, Fernandes FA, Moran D (2016) Increasing beef production could lower greenhouse gas emissions in Brazil if decoupled from deforestation. Nat Clim Chang 6(5):493–497. https://doi.org/10.1038/nclimate2916
Article
Google Scholar
Dellink R, Chateau J, Lanzi E, Magné B (2015) Long-term economic growth projections in the Shared Socioeconomic Pathways. Global Environmental Change, IN PRESS, 1–15. https://doi.org/10.1016/j.gloenvcha.2015.06.004
Donnison C, Holland RA, Hastings A, Felix LA, Gail E (2020) Bioenergy with Carbon Capture and Storage (BECCS): Finding the win – wins for energy, negative emissions and ecosystem services — size matters. GCB Bioenergy March, 586–604. https://doi.org/10.1111/gcbb.12695
EPE (2015) PNE - Cenário econômico 2050. http://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/Plano-Nacional-de-Energia-2050. Accessed 27 Dec 2021.
EPE (2019) Balanço Energético Nacional. https://epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-2019
EPE (2020) Análise de conjuntura dos biocombustíveis - Ano 2019. https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-489/Analise_de_Conjuntura_Ano_2019.pdf
FIESP (2015) Outlook Fiesp 2025: projeções para o agronegócio brasileiro. http://hotsite.fiesp.com.br/outlookbrasil/2025/files/assets/common/downloads/publication.pdf. Accessed 27 Dec 2021.
Fricko O, Havlik P, Rogelj J, Klimont Z, Gusti M, Johnson N, Kolp P, Strubegger M, Valin H, Amann M, Ermolieva T, Forsell N, Herrero M, Heyes C, Kindermann G, Krey V, McCollum DL, Obersteiner M, Pachauri S, … Riahi K (2016) The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road scenario for the 21st century. Glob Environ Chang. https://doi.org/10.1016/j.gloenvcha.2016.06.004
Gasparatos A, Stromberg P, Takeuchi K (2011) Biofuels, ecosystem services and human wellbeing: putting biofuels in the ecosystem services narrative. Agr Ecosyst Environ 142(3–4):111–128. https://doi.org/10.1016/j.agee.2011.04.020
Article
Google Scholar
GofB (2015) Intended Nationally Determined Contribution (INDC) towards achieving the objective of the UNFCCC. https://www4.unfccc.int/sites/submissions/INDC/Published%20Documents/Brazil/1/BRAZIL%20iNDC%20english%20FINAL.pdf. Accessed 27 Dec 2021.
Goldemberg J, Coelho ST, Nastari PM, Lucon O (2004) Ethanol learning curve — the Brazilian experience. Biomass Bioenerg 26:301–304. https://doi.org/10.1016/S0961-9534(03)00125-9
Article
Google Scholar
Hanssen SV, Daioglou V, Steinmann ZJN, Frank S, Popp A, Brunelle T, Lauri P, Hasegawa T, Huijbregts MAJ, Van Vuuren DP (2020a) Biomass residues as twenty-first century bioenergy feedstock—a comparison of eight integrated assessment models. Clim Change 163(3):1569–1586. https://doi.org/10.1007/s10584-019-02539-x
Article
Google Scholar
Hanssen SV, Daioglou V, Steinmann ZJN, Doelman JC, Van Vuuren DP, Huijbregts MAJ (2020b) The climate change mitigation potential of bioenergy with carbon capture and storage. Nat Clim Chang. https://doi.org/10.1038/s41558-020-0885-y
Article
Google Scholar
Hasegawa T, Fujimori S, Havlík P, Valin H, Bodirsky BL, Doelman JC, Fellmann T, Kyle P, Koopman JFL, Lotze-Campen H, Mason-D’Croz D, Ochi Y, Pérez Domínguez I, Stehfest E, Sulser TB, Tabeau A, Takahashi K, Takakura J, van Meijl H, … Witzke P (2018) Risk of increased food insecurity under stringent global climate change mitigation policy. Nat Clim Change 8(8) 699–703. https://doi.org/10.1038/s41558-018-0230-x
Havlik P, Valin H, Herrero M, Obersteiner M, Schmid E, Rufino MC, Mosnier A, Thornton PK, Bottcher H, Conant RT, Frank S, Fritz S, Fuss S, Kraxner F, Notenbaert A (2014) Climate change mitigation through livestock system transitions. Proc Natl Acad Sci 111(10):3709–3714. https://doi.org/10.1073/pnas.1308044111
Article
Google Scholar
Herreras Martínez S, Koberle A, Rochedo P, Schaeffer R, Lucena A, Szklo A, Ashina S, van Vuuren DP (2015) Possible energy futures for Brazil and Latin America in conservative and stringent mitigation pathways up to 2050. Technol Forecast Soc Change 98. https://doi.org/10.1016/j.techfore.2015.05.006
Herrero M, Thronton PK, Notenbaert AM, Wood S, Msangi S, Freeman HA, Bossio D, Dixon J, Peters M, van de Steeg J, Lynam J, Parthasarathy Rao P, Macmillan S, McDermott J, Seré C, Rosegrant M (2010) Smart investments in sustainable food production: revisiting mixed crop-livestock systems. Science 327(FEBRUARY):822–825
Article
Google Scholar
Hunsberger C, Bolwig S, Corbera E, Creutzig F (2014) Livelihood impacts of biofuel crop production: implications for governance. Geoforum 54:248–260. https://doi.org/10.1016/j.geoforum.2013.09.022
Article
Google Scholar
IEA (2020) World energy balances: overview. https://www.iea.org/reports/world-energy-balances-overview
INPE (2017) Projeto PRODES. MONITORAMENTO DA FLORESTA AMAZÔNICA BRASILEIRA POR SATÉLITE. http://www.obt.inpe.br/prodes/index.php
IPCC (2014) WG III Assessment Report 5. http://www.ipcc.ch/report/ar5/wg3/
IPCC (2019) Summary for Policymakers. In J. M. P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.- O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, (Ed.), Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. https://www.ipcc.ch/srccl/chapter/summary-for-policymakers/
KC S, Lutz W (2017) The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Glob Environ Chang 42 181–192. https://doi.org/10.1016/j.gloenvcha.2014.06.004
Klein BC, Chagas MF, Watanabe MDB, Bonomi A, MacielFilho R (2019) Low carbon biofuels and the New Brazilian National Biofuel Policy (RenovaBio): a case study for sugarcane mills and integrated sugarcane-microalgae biorefineries. Renew Sustain Energy Rev 115(February):109365. https://doi.org/10.1016/j.rser.2019.109365
Article
Google Scholar
Köberle AC (2019) The value of BECCS in IAMs: a review. Curr Sustainab/renewab Energ Rep 6(4):107–115. https://doi.org/10.1007/s40518-019-00142-3
Article
Google Scholar
Köberle AC, Garaffa RSB, Cunha Rochedo PR, Lucena AF, Szklo A, Schaeffer R (2018) Are conventional energy megaprojects competitive? Suboptimal decisions related to cost overruns in Brazil. Energy Policy 122 689–700. https://doi.org/10.1016/j.enpol.2018.08.021
Köberle AC, Rochedo PR, Lucena APF, Szklo A, Schaeffer R (2020) Brazil emissions trajectories in a well-below 2oC world: the role of disruptive technologies versus land-based mitigation in an already low-emission energy system. Clim Change 162:1823–1842. https://doi.org/10.1007/s10584-020-02856-6
Article
Google Scholar
Köberle A, Rochedo P, Portugal-Pereira J, Szklo A S, de Lucena AFP, Schaeffer R (2015) Brazil Chapter. In T. Spencer & R. Pierfedericci (Eds.), Beyond the numbers: understanding the transformation induced by INDCs. A Report of the MILES Project Consortium (Issue October, pp. 34–45). http://www.iddri.org/Publications/Beyond-the-numbers-Understanding-the-transformation-induced-by-INDCs
Krey V, Guo F, Kolp P, Zhou W, Schaeffer R, Awasthy A, Bertram C, de Boer H-S, Fragkos P, Fujimori S, He C, Iyer G, Keramidas K, Köberle AC, Oshiro K, Reis LA, Shoai-Tehrani B, Vishwanathan S, Capros P, … van Vuuren DP (2019) Looking under the hood: a comparison of techno-economic assumptions across national and global integrated assessment models. Energy 172 https://doi.org/10.1016/j.energy.2018.12.131
Langholtz M, Busch I, Kasturi A, Hilliard MR, Mcfarlane J, Tsouris C, Mukherjee S, Omitaomu OA, Kotikot SM, Allen-dumas MR, Derolph CR, Davis MR, Parish ES (2020) The economic accessibility of CO 2 sequestration through bioenergy with carbon capture and storage ( BECCS ) in the US. Land 9(9):299. https://doi.org/10.3390/land9090299
Article
Google Scholar
Leblanc F, Brunelle T, Dumas P, Bibasz R, Pelletierx C, Prudhomme R (in review). Implications of large-scale bioenergy deployment on energy demand and agricultural supply: an inter-sectoral perspective from the Imaclim-NLU model. This Issue
Lovejoy TE, Nobre C (2019) Amazon tipping point: last chance for action. Sci Adv 5(12). https://doi.org/10.1126/sciadv.aba2949
Lucena AFP, Clarke L, Schaeffer R, Szklo A, Rochedo PRR, Nogueira LPP, Daenzer K, Gurgel A, Kitous A, Kober T (2016) Climate policy scenarios in Brazil: a multi-model comparison for energy. Energy Economics 56:564–574. https://doi.org/10.1016/j.eneco.2015.02.005
Article
Google Scholar
MAPA (2013) Projeções do Agronegócio: Brasil 2012/2013 a 2022/2023. http://www.agricultura.gov.br/arq_editor/projecoes - versao atualizada.pdf
Matzenberger J, Kranzl L, Tromborg E, Junginger M, Daioglou V, Sheng Goh C, Keramidas K (2015) Future perspectives of international bioenergy trade. Renew Sustain Energy Rev 43:926–941. https://doi.org/10.1016/j.rser.2014.10.106
Article
Google Scholar
Mazzone A, Cruz T, Bezerra P (2021) Firewood in the forest: Social practices, culture, and energy transitions in a remote village of the Brazilian Amazon. Energy Res Soc Sci 74 101980. https://doi.org/10.1016/j.erss.2021.101980
MCTIC (2016) Estimativas Anuais de Emissões de Gases de Efeito Estufa no Brasil. http://sirene.mcti.gov.br/documents/1686653/1706227/LIVRO_MCTIC_EstimativaDeGases_Publicação_210x297mm_FINAL_WEB.pdf/61e78a4d-5ebe-49cd-bd16-4ebca30ad6cd
Meller L, van Vuuren DP, Cabeza M (2015) Quantifying biodiversity impacts of climate change and bioenergy: the role of integrated global scenarios. Reg Environ Change 15(6):961–971. https://doi.org/10.1007/s10113-013-0504-9
Article
Google Scholar
Nepstad D, Soares-Filho BS, Merry F, Lima A, Moutinho P, Carter J, Bowman M, Cattaneo A, Rodrigues H, Schwartzman S, McGrath DG, Stickler CM, Lubowski R, Piris-Cabezas P, Rivero S, Alencar A, Almeida O, Stella O (2009) The end of deforestation in the Brazilian Amazon - Supporting online material (SOM). Science (New York, NY) 326(5958):1–28. https://doi.org/10.1126/science.1182108
Article
Google Scholar
Octaviano C, Paltsev S, Gurgel AC (2014) Climate change policy in Brazil and Mexico: Results from the MIT EPPA model. Energy Economics 56:600–614. https://doi.org/10.1016/j.eneco.2015.04.007
Article
Google Scholar
OECD-FAO (2015) OECD-FAO Agricultural Outlook 2015. https://doi.org/10.1787/agr_outlook-2015-en
Popp A, Calvin K, Fujimori S, Havlik P, Humpenöder F, Stehfest E, Bodirsky BL, Dietrich JP, Doelmann JC, Gusti M, Hasegawa T, Kyle P, Obersteiner M, Tabeau A, Takahashi K, Valin H, Waldhoff S, Weindl I, Wise M, … Vuuren DP va (2017) Land-use futures in the shared socio-economic pathways. Glob Environ Chang 42 331–345. https://doi.org/10.1016/j.gloenvcha.2016.10.002
Rochedo PRR, Filho BS, Viola E, Schaeffer R, Szklo A, Lucena AFP, Köberle A, Davis JL, Rajão R, Rathmann R (2018) The threat of political bargaining to climate mitigation in Brazil. Nature Clim Change
Rogelj J, Shindell D, Jiang K, Fifita S, Forster P, Ginzburg V, Handa C, Kheshgi H, Kobayashi S, Kriegler E, Mundaca L, Séférian R, Vilariño MV (2018) Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development. In Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (Eds.) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,. https://www.ipcc.ch/sr15/chapter/2-0/
Rogelj, Joeri, Shindell, D., Jiang, K., & Al., E. (2018). Mitigation pathways compatible with 1.5°C in the context of sustainable development. In V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D.Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Eds.), Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. http://www.ipcc.ch/report/sr15/
Rose SK, Popp A, Fujimori S, Havlik P, Weyant J, Wise M, van Vuuren D, Brunelle T, Cui Y, Daioglou V, Frank S, Hasegawa T, Humpenöder F, Kato E, Sands RD, Sano F, Tsutsui J, Doelman J, Muratori M, Prudhomme R, Wada K, Yamamoto H, 2021. Global biomass supply modeling for long-run management of the climate system, Climatic Change, this issue.
Rose SK, Bauer N, Popp A, Weyant J, Fujimori S, Havlik P, Wise M, van Vuuren DP (2020) An overview of the Energy Modeling Forum 33rd study: assessing large-scale global bioenergy deployment for managing climate change. Clim Change 163(3):1539–1551. https://doi.org/10.1007/s10584-020-02945-6
Rose SK, Kriegler E, Bibas R, Calvin K, Popp A, van Vuuren DP, Weyant J (2014) Bioenergy in energy transformation and climate management. Clim Change 123(3–4):477–493. https://doi.org/10.1007/s10584-013-0965-3
Article
Google Scholar
Rose SKR, Glub AA, Sohngen B (2013) Total factor and relative agricultural productivity and deforestation. Amer J Agr Econ 95(2):426–434. https://doi.org/10.1093/ajae/aas113
Article
Google Scholar
Rua Rodriguez Rochedo P (2016) Development of a global integrated energy model to evaluate teh Brazilian role in climate change mitigation scenarios [Universidade Ederal do Rio de Janeiro]. http://ppe.ufrj.br/ppe/production/tesis/pedro_rochedo.pdf
Salina FH, de Almeida IA, Bittencourt FR (2020) RenovaBio Opportunities and Biofuels Outlook in Brazil. In Sayigh A (Ed.), Renewable Energy and Sustainable Buildings: Selected Papers from the World Renewable Energy Congress WREC 2018 (pp. 391–399). Springer International Publishing. https://doi.org/10.1007/978-3-030-18488-9_30
Searchinger T, Edwards R, Mulligan D, Heimlich R, Plevin R (2015) Do biofuel policies seek to cut emissions by cutting food? Science 347(6229):1420–1422. https://doi.org/10.1126/science.1261221
Article
Google Scholar
SEEG (2019) Total Emissions by Sector. Sistema de Estimativas de Emissões e Remoções de Gases de Efeito Estufa (SEEG). http://plataforma.seeg.eco.br/total_emission. Accessed 27 Dec 2021.
de Silva RO, Barioni LG, Hall JAJ, Moretti AC, Fonseca Veloso R, Alexander P, Crespolini M, Moran D (2017) Sustainable intensification of Brazilian livestock production through optimized pasture restoration. Agricultural Systems 153:201–211. https://doi.org/10.1016/j.agsy.2017.02.001
Article
Google Scholar
Smith P (2013) Delivering food security without increasing pressure on land. Glob Food Sec 2(1):18–23. https://doi.org/10.1016/j.gfs.2012.11.008
Article
Google Scholar
Soares-filho B, Rajão R, Macedo M, Carneiro A, Costa W, Coe M, Rodrigues H, Alencar A (2014) Cracking Brazil’s Forest Code. Science 344(April):363–364
Article
Google Scholar
Soares-Filho B, Rajão R, Merry F, Rodrigues H, Davis J, Lima L, Macedo M, Coe M, Carneiro A, Santiago L (2016) Brazil’s market for trading forest certificates. PLoS ONE 11(4):1–17. https://doi.org/10.1371/journal.pone.0152311
Article
Google Scholar
Sonter LJ, Barrett DJ, Soares-Filho BS, Moran CJ (2014) Global demand for steel drives extensive land-use change in Brazil’s Iron Quadrangle. Glob Environ Chang 26(1):63–72. https://doi.org/10.1016/j.gloenvcha.2014.03.014
Article
Google Scholar
Strassburg BBN, Latawiec AE, Barioni LG, Nobre CA, da Silva VP, Valentim JF, Vianna M, Assad ED (2014) When enough should be enough: Improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Global Environmental Change 28:84–97. https://doi.org/10.1016/j.gloenvcha.2014.06.001
Article
Google Scholar
Tagomori IS, Rochedo PRR, Szklo A (2019) Techno-economic and georeferenced analysis of forestry residues-based Fischer-Tropsch diesel with carbon capture in Brazil. Biomass Bioenerg 123(February):134–148. https://doi.org/10.1016/j.biombioe.2019.02.018
Article
Google Scholar
USDA (2020) USDA Agricultural Projections to 2029. https://www.ers.usda.gov/webdocs/outlooks/95912/oce-2020-1.pdf?v=789.5
van Ruijven BJ, Levy MA, Agrawal A, Biermann, F, Birkmann J, Carter TR, Ebi KL, Garschagen M, Jones B, Jones R, Kemp-Benedict E, Kok M, Kok K, Lemos MC, Lucas PL, Orlove B, Pachauri S, Parris TM, Patwardhan A, … Schweizer VJ (2013) Enhancing the relevance of Shared Socioeconomic Pathways for climate change impacts, adaptation and vulnerability research. Climatic Change 122(3) 481–494. https://doi.org/10.1007/s10584-013-0931-0