Overall approach
The effect of climate change on agriculture in the UK is characterised by a series of agro-climate indicators, using 12×12-km gridded observed daily climate data for 1981–2010 and UKCP18 climate projections applied using the delta method. Results are aggregated to the regional level (Fig. 1), weighted by area of agricultural land.
Agro-climate indicators
Table 1 summarises the agro-climate indicators used here, separated into indicators characterising the climate resource, agricultural operations, and climate hazards—although the boundaries between the three categories are not sharp. The indicators are described in more detail in Supplementary Material. All are calculated from daily weather data to produce time series of annual totals or accumulations.
Table 1 Summary of the agri-climate indicators The thermal growing season starts when average temperatures exceed 5.6 °C, and growing season length is the time from the start of the thermal growing season to when average temperatures fall below 5.6 °C. Plant phenological development is, in the absence of other constraints on water and nutrient availability, determined by accumulated temperature above 5.6 °C as measured by growing degree days. This may be restricted on days with high temperature, but no upper limit is imposed here, and this analysis uses the same algorithm for calculating growing degree days as used by Kendon et al. (2019a). The productivity of perennial crops—such as grassland—is directly linked to growing degree days, in the absence of other constraints on growth. The total number of growing degree days influences which annual crops could feasibly be planted. The potential soil moisture deficit (PSMD) is a measure of crop demand for water and hence the potential need for supplemental irrigation. It is calculated as the largest cumulative difference during the year between potential evaporation and rainfall (Knox et al. 2010; Daccache et al. 2012). The climatic suitability of land for agriculture is often based on accumulated temperature and PSMD (e.g. Brown et al. 2011; Daccache et al. 2012; Keay et al. 2013).
The start of field operations indicator is a proxy for the earliest date in the year when a field might be usefully worked (Harding et al. 2015): an accumulated thermal sum of 200 °C (Tsum200) is commonly used by farmers as a rule of thumb for when to apply fertiliser to grass, for example. If soils are wet, then farmers cannot use machinery or put livestock into fields. This is characterised here by the number of days when soil moisture is at or above field capacity, calculated using a simple daily water balance model assuming a constant well-drained clay-loam soil with fixed field capacity across the UK (see Supplementary Material for a sensitivity analysis for other soil properties). Again, this informs the capability of land for agriculture (Keay et al. 2013).
Farmer decisions on what and when to plant are influenced by anticipated climate resource and operational conditions, and perceptions of the chance of damaging events. Once decisions are made, the productivity of crops and livestock will depend on actual growing conditions and the occurrence of damaging events. Lack of water is characterised by two drought indicators. The Standardised Precipitation Index (SPI; McKee et al. 1993) is based on precipitation totals accumulated over 3 months (SPI-3), following Bachmair et al. (2018). The Standardised Precipitation Evaporation Index (SPEI; Vicente-Serrano et al. 2010) is based on the difference between precipitation and potential evaporation accumulated over 6 months (SPEI-6), following Parsons et al. (2019). Both indicators are calculated by standardising the accumulated time series over a specific reference period, here 1981–2010, and critical thresholds determined empirically rather than using a fitted theoretical distribution. In each case, the indicator is the proportion of time with an index value below a threshold value of −1.5, which occurs by definition 6.7% of the time over the reference period (or for 24 out of the 360 months). Both drought indicators are associated with agricultural impacts in the UK (Haro-Monteaguodo et al. 2017; Bachmair et al. 2018; Parsons et al. 2019).
High temperatures can limit growth (and at the extreme kill plants) and cause discomfort to livestock, but the critical thresholds vary between crops and animals and vary through the year. Two illustrative heat-stress indicators are calculated here. One is the number of days during the anthesis (flowering and seed setting) stage for wheat when maximum temperature exceeds 32 °C (Jones et al. 2020): anthesis is assumed to occur between 1 May and 15 June. Grain yield reduces by at least 10% for each day during anthesis that temperature exceeds 32 °C. The other characterises the effect of high temperatures on dairy cattle milk yield (Dunn et al. 2014; Fodor et al. 2018; Jones et al. 2020). Here, this is represented by the number of days the temperature humidity index (THI) exceeds 70. THI is calculated from daily average temperature and relative humidity. Milk yield falls linearly with increase in THI above 70 (which is equivalent to an average temperature of around 21 °C with a typical relative humidity of 75%). At the other extreme, cold days can hinder growth—although some crops (such as apples) require periods of low temperatures at critical development stages. The number of cold days is here characterised by the number of days with minimum temperatures below 0 °C (air frost).
Annual crops need to accumulate specific numbers of degree days to reach specific growth stages, but if these stages are reached too quickly, then yields are reduced (Craufurd & Wheeler & 2008; Hatfield et al. 2011). This is characterised here by the time taken in a year to accumulate the average reference period (1981–2010) growing degree days: a reduction in crop growth duration implies a reduction in yield compared to the average expectation.
Finally, productivity can be affected by pests, parasites, and disease. The accumulated frost indicator measures the severity of winter and is a proxy for the likelihood that pests survive over winter (Harding et al. 2015): the more negative the indicator, the lower the likelihood that pests survive. It is specifically based on data from aphids affecting cereal crops (Dewar and Carter 1984). A second indicator characterises parasite outbreaks in sheep (Jones et al. 2020). The number of days with average temperature above 9 °C is an indicator of the potential number of life cycles of one of the most significant gastro-intestinal parasites (Haemonchus contortus) causing ill-health and malnourishment in sheep (Jones et al. 2020).
Climate change will affect the mean and the year-to-year variability in these indicators. Different agricultural stakeholders will have different priorities for information on how the indicators will change. Some may be interested in projected changes in the mean, whilst others might be more concerned by changes in the chance of experiencing some critical event or season. Some want to get an idea of the general direction and significance of climate change, and others are more concerned about planning to enhance resilience. There are therefore several different ways of presenting how climate change will affect agro-climate indicators, and some involve defining critical thresholds representing a ‘significant’ change. The analysis here is primarily concerned with characterising the potential effects of climate change at a strategic level, and in itself is not intended to directly inform specific farm or industry adaptation actions to enhance resilience. With one exception, the analysis is therefore based on changes to long-term (30 years) mean values in the indicators, recognising both that any individual year may experience a value very different to the mean, and that changes in the mean may be small compared with year-to-year variability. The one exception is the wheat heat stress indicator, which is expressed as the chance of experiencing at least one heat stress day in a year. This is because heat stress days are very infrequent, the average annual number is not very meaningful, and the critical threshold is very clear (just 1 day above the threshold causes problems). For all the other indicators, thresholds defining critical change depend on context or degree of risk aversion.
The set of indicators presented here characterise many of the effects of weather and its variability on crop and livestock productivity. Other potential effects are not considered. These include the occurrence of late frosts, the effect of short-duration heavy rainfall on crops, the effects of river flooding, and the effect of hailstorms. The indicators also do not consider the effects of climate change on soil fertility or erosion, or the potential beneficial effects of increasing CO2 concentrations.
Reference climate data
Observed climate data were taken from HadUK-Grid 12-km resolution observational data set (Met Office 2018; Hollis et al. 2019), supplemented by ERA5 reanalysis (Copernicus Climate Change Service 2017). The HadUK-Grid 12 km data set includes daily minimum and maximum temperature and rainfall up to 2018, but sunshine hours, windspeed, and relative humidity (needed to estimate potential evaporation) are only available as monthly averages. Daily windspeed and relative humidity was therefore estimated from the ERA5 reanalysis, rescaling the ERA5 reanalysis so that the monthly mean equalled the HadUK-Grid monthly mean. The time period 1981–2010 is used to represent current climate.
Climate projections and their application
The UKCP18 land climate projections (Lowe et al. 2018; Murphy et al. 2019) consist of four strands: global, regional, local, and probabilistic. The global strand comprises an ensemble of 15 climate projections at a spatial resolution of 60×60km made using variants of the HadGEM3 climate model and an ensemble of 12 projections made using CMIP5 climate models. Projections are made for two levels of climate forcing, representing high (RCP8.5) and low (RCP2.6) emissions. These projections each maintain realistic physical relationships between climate variables and coherent patterns of change across the UK. The regional strand is based on higher-resolution versions of HadGEM3, and in practice gives similar results to the global HadGEM3 projections. The local strand is a smaller number of even higher-resolution projections, and these were not applied. The probabilistic strand consists of an ensemble of 3000 equally plausible projections at four different levels of forcing, but these do not necessarily maintain realistic physical relationships between variables as represented by the global and regional models.
This paper focuses on the probabilistic projections with RCP2.6, RCP6.0, and RCP8.5 forcings, which have the global temperature increases summarised in Table 2. The indicators were also calculated with the global and regional strands, and are presented in Supplementary Material: important differences between these strands and the probabilistic strands are highlighted below.
Table 2 Increases in global mean temperature with the RCP2.6, RCP6.0, and RCP8.5 projections Figure 2 shows regional average changes in seasonal temperature and rainfall with the three sets of forcings. Temperature increases in each season consistently across the UK. Rainfall tends to decrease in summer, particularly across the south and east, and increase in autumn and winter, particularly in the north and west. The direction of change in rainfall in spring is more uncertain. The changes are greatest with the higher emissions.
The climate projections to 2100 for monthly average temperature, precipitation, vapour pressure, cloud cover, and windspeed were applied to the gridded observed 1981–2010 daily time series using the delta method (see Supplementary Material). Each variable for a given ensemble member was first expressed as an anomaly from its 1981–2010 monthly mean (absolute for temperature, relative for the other variables). The individual probabilistic strand ensemble members do not necessarily have consistent changes in minimum and maximum temperatures, so changes in average temperature were applied to both minimum and maximum temperatures. The probabilistic projections also do not include windspeed, so this was assumed unchanged (this is only used in the calculation of potential evaporation, and leaving this unchanged has very little effect on changes in potential evaporation).
The resulting time series of monthly anomalies were then smoothed using a 31-year running mean to remove the effect of year-to-year variability and extract the climate change signal. In order to calculate anomalies for the last 15 years of the projections, the anomaly time series were extrapolated using linear regression. There can be large differences in anomaly from 1 month to the next—which introduces unrealistic steps at month boundaries—so the monthly anomalies were interpolated to the daily scale before being applied to the observed daily data. Time series of daily weather from 2011 to 2100 were constructed by repeating the 1981–2010 time series three times and applying the annual time series of anomalies.
The UKCP18 projections comprise ensembles of projected time series of monthly or daily weather variables. These model time series include changes in both mean and variability, as simulated by the climate model, and could in principle be used directly to calculate the agro-climate indicators. Instead, this study uses the delta method as outlined above for three reasons. First, observed data is used to characterise the current climate because this observed experience is familiar to stakeholders. Second, some form of bias adjustment need to be applied to the UKCP18 model projections. Different bias adjustment approaches exist correcting for different aspects of bias, and all assume that the adjustments continue into the future. Third, it would have been impractical to test and apply bias adjustment methods which preserved relationships between variables for all projections and locations.
The delta method as applied here produces time series of daily weather which broadly maintain observed patterns of day to day and year to year variability. However, it assumes that relative variability in climate from year to year does not change into the future, and that the proportional change in a variable does not vary with the magnitude of that variable. Climate change could generate increased variability in summer temperatures from year to year (Kendon et al. 2019b), and this would increase the number of high temperature extremes. Similarly, a reduction in the number of wet days would increase the chance of prolonged dry spells, and an increase in the number of heavy precipitation events (Kendon et al. 2019a) could lead to an increase in short-duration soil water-logging. These potential effects are not incorporated here.
Regional averages
The agro-climate indicators are implemented at a spatial resolution of 12×12km across the UK. Regional averages are calculated for UK regions (8 in England (excluding London), 3 in Scotland, and Wales and Northern Ireland), weighting the grid cell values by the area of cropland and improved pasture taken from the 2015 UK Land Cover Map (CEH 2017). The PSMD and wheat heat stress indicators are weighted by cropland area only, and the livestock indicators were averaged over the area of improved pasture.