Skip to main content

Climate change impacts on the atmospheric circulation, ocean, and fisheries in the southwest South Atlantic Ocean: a review

Abstract

We present an interdisciplinary review of the observed and projected variations in atmospheric and oceanic circulation within the southwestern South Atlantic focused on basin-scale processes driven by climate change, and their potential impact on the regional fisheries. The observed patterns of atmospheric circulation anomalies are consistent with anthropogenic climate change. There is strong scientific evidence suggesting that the Brazil Current is intensifying and shifting southwards during the past decades in response to changes in near-surface wind patterns, leading to intense ocean warming along the path of the Brazil Current, the South Brazil Bight, and in the Río de la Plata. These changes are presumably responsible for the poleward shift of commercially important pelagic species in the region and the long-term shift from cold-water to warm-water species in industrial fisheries of Uruguay. Scientific and traditional knowledge shows that climate change is also affecting small-scale fisheries. Long-term records suggest that mass mortalities decimated harvested clam populations along coastal ecosystems of the region, leading to prolonged shellfishery closures. More frequent and intense harmful algal blooms together with unfavorable environmental conditions driven by climate change stressors affect coastal shellfisheries, impact economic revenues, and damage the livelihood of local communities. We identify future modelling needs to reduce uncertainty in the expected effects of climate change on marine fisheries. However, the paucity of fisheries data prevents a more effective assessment of the impact of climate change on fisheries and hampers the ability of governments and communities to adapt to these changes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Acha EM, Mianzan HW, Guerrero RA et al (2004) Marine fronts at the continental shelves of austral South America: physical and ecological processes. J Mar Syst 44:83–105

    Google Scholar 

  2. Acha EM, Simionato CG, Carozza C, Mianzan H (2012) Climate-induced year-class fluctuations of whitemouth croaker Micropogonias furnieri (Pisces, Sciaenidae) in the Río de la Plata estuary, Argentina–Uruguay. Fish Oceanogr 21:58–77

    Google Scholar 

  3. Alcaraz CM (2016) Diversidad genética y estructura poblacional de Caballa (Scomber colias, Gmelin, 1789) en aguas del Atlántico y del Mediterráneo. Dissertation, Universidad de Las Palmas de Gran Canaria

  4. Araújo FG, Teixeira TP, Guedes APP et al (2018) Shifts in the abundance and distribution of shallow water fish fauna on the southeastern Brazilian coast: a response to climate change. Hydrobiologia 814:205–218

    Google Scholar 

  5. Auad G, Martos P (2012) Climate variability of the northern Argentinean shelf circulation: impact on Engraulis anchoita. Int J Ocean Clim Syst 3:17–43

    Google Scholar 

  6. Barange M, Bahri T, Beveridge MCM et al (2018) Impacts of climate change on fisheries and aquaculture: synthesis of current knowledge, adaptation and mitigation options. FAO Fish Aquac Tech Paper 627. Rome

  7. Barreiro M (2010) Influence of ENSO and the South Atlantic Ocean on climate predictability over Southeastern South America. Clim Dyn 35:1493–1508

    Google Scholar 

  8. Barreiro M, Tippmann A (2008) Atlantic modulation of El Niño influence on summertime rainfall over Southeastern South America. Geophys Res Lett 35:L16704

    Google Scholar 

  9. Barreiro M, Sitz L, de Mello S et al (2018) Modelling the role of Atlantic air–sea interaction in the impact of Madden-Julian Oscillation on South American climate. Int J Climatol 39:1104–1116

    Google Scholar 

  10. Bertrand A, Vögler R, Defeo O (2018) Climate change impacts, vulnerabilities and adaptations: Southwest Atlantic and Southeast Pacific marine fisheries. FAO Fish Aquac Tech Paper 627. Rome

  11. Blanchard J, Jennings S, Holmes R et al (2012) Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philos Trans Royal Soc B 367:2979–2989

    Google Scholar 

  12. Blasiak R, Spijkers J, Tokunaga K et al (2017) Climate change and marine fisheries: least developed countries top global index of vulnerability. PLoS One 12:e0179632

    Google Scholar 

  13. Brander KM (2007) Global fish production and climate change. Proc Natl Acad Sci U S A 104:19709–19714

    Google Scholar 

  14. Bruge A, Alvarez P, Fontán A et al (2016) Thermal niche tracking and future distribution of Atlantic mackerel spawning in response to ocean warming. Front Mar Sci 3:86

    Google Scholar 

  15. Byrne M (2011) Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr Mar Biol: An Annu Rev 49:1–42

    Google Scholar 

  16. Campos EJD, Gonçalves JE, Ikeda Y (1995) Water mass characteristics and geostrophic circulation in the South Brazil Bight – Summer of 1991. J Geophys Res 100:18537–18550

    Google Scholar 

  17. Carranza MM, Gille ST, Piola AR et al (2017) Wind modulation of upwelling at the shelf-break front off Patagonia: observational evidence. J Geophys Res Oceans 122:2401–2421

    Google Scholar 

  18. Catalani KM (2017) Análise da ocorrência de juvenis de sardinha verdadeira (Sardinella brasiliensis, Steindachner, 1879) na região costeira do Rio Grande, RS, no verão de 2016/2017. Dissertation, Universidade Federal de Rio Grande. (http://argo.furg.br/?RG001432709)

  19. Cavalcanti IFA, Carril AF, Penalba OC et al (2015) Precipitation extremes over La Plata Basin – review and new results from observations and climate simulations. J Hydrol 523:211–230

    Google Scholar 

  20. Cepeda GD, Temperoni B, Sabatini ME et al (2018) Zooplankton communities of the argentine continental shelf (SW Atlantic, ca. 34°-55°S), an overview. In: Hoffmeyer M et al (eds) Plankton ecology of the Southwestern Atlantic. Springer, Cham, pp 171–199

    Google Scholar 

  21. Checkley DM Jr, Asch RG, Rykaczewski RR (2017) Climate, anchovy, and sardine. Annu Rev Mar Sci 9:469–493

    Google Scholar 

  22. Cheung WWL, Watson R, Pauly D (2013) Signature of ocean warming in global fisheries catch. Nature 497:365–368

    Google Scholar 

  23. Cheung WWL, Frölicher TL, Asch RG et al (2016) Building confidence in projections of the responses of living marine resources to climate change. ICES J Mar Science 73:1283–1296

    Google Scholar 

  24. Cheung WWL, Bruggeman J, Butenschön M (2018) Projected changes in global and national potential marine fisheries catch under climate change scenarios in the twenty-first century. In: Barange M, Bahri T, Beveridge MCM et al (eds) Impacts of climate change on fisheries and aquaculture: synthesis of current knowledge, adaptation and mitigation options. FAO Fisheries and Aquaculture Tech. Paper 627, pp 63–85. Rome, FAO

  25. Ciotti AM, Odebrecht C, Fillmann G, Möller OO (1995) Freshwater outflow and subtropical convergence influence on phytoplankton biomass at the southern Brazilian continental shelf. Cont Shelf Res 15:1737–1756

    Google Scholar 

  26. Cochrane K, De Young C, Soto D, Bahri T (2009) Climate change implications for fisheries and aquaculture: overview of current scientific knowledge. FAO Fish Aquac Tech Paper 530. Rome, FAO

  27. Combes V, Matano RP (2018) The Patagonian shelf circulation: drivers and variability. Progr Oceanogr 167:24–43

    Google Scholar 

  28. Costa PL, Valderrama PRC, Madureira LASP (2016) Relationships between environmental features, distribution and abundance of the Argentine anchovy, Engraulis anchoita, on the south west Atlantic continental shelf. Fish Res 173:229–235

    Google Scholar 

  29. Defeo O, Gianelli I, Martínez G et al (2018) Natural, social and governance responses of a small-scale fishery to mass mortalities: the yellow clam Mesodesma mactroides in Uruguay. In: Guillotreau P, Bundy A, Perry RI (eds) Global change in marine systems: societal and governing responses. Routledge Studies in Environment, Culture, and Society Series, pp 237-252

  30. del Favero JM, Katsuragawa M, Zani-Teixeira MDL, Turner JT (2018) Modeling long-term fluctuations in the distribution and abundance of Engraulis anchoita eggs and larvae in the southeastern Brazilian bight. Mar Ecol Progr Ser 587:159–173

    Google Scholar 

  31. Ding Q, Chen X, Hilborn R, Chen Y (2017) Vulnerability to impacts of climate change on marine fisheries and food security. Mar Policy 83:55–61

    Google Scholar 

  32. Eschmeyer WN, Fricke R, Van der Laan R (2017) Catalog of fishes: genera, species, references. California Academy of Sciences. https://www.calacademy.org/scientists/projects/catalog-of-fishes

  33. FAO (2018) The State of World Fisheries and Aquaculture 2018. Meeting the sustainable development goals. Rome (Licence: CC BY-NC-SA 3.0 IGO)

  34. Franco BC, Palma ED, Combes V et al (2017) Physical processes controlling passive larval transport at the Patagonian Shelf Break Front. J Sea Res 124:17–25

    Google Scholar 

  35. Franco BC, Palma ED, Combes V et al (2018) Modeling the offshore export of Subantarctic Shelf Waters from the Patagonian shelf. J Geophys Res: Oceans 123:4491–4502

    Google Scholar 

  36. Free CM, Thorson JT, Pinsky ML et al (2019) Impacts of historical warming on marine fisheries production. Science 363:979–983

    Google Scholar 

  37. Gaines SD, Costello C, Owashi B (2018) Improved fisheries management could offset many negative effects of climate change. Sci Adv 4:eaao1378

    Google Scholar 

  38. García-Alonso J, Lercari D, Defeo O (2019) Río de la Plata: a neotropical estuarine system. In: Wolanski E, Day JW, Elliott M, Ramesh R (eds) Coasts and estuaries, Elsevier, pp 45–56

  39. Gasalla MA, Abdallah PR, Lemos D (2017) Potential impacts of climate change in Brazilian marine fisheries and aquaculture. In: Phillips BF, Pérez-Ramírez M (eds) Climate change impacts on fisheries and aquaculture: a global analysis, John Wiley & Sons, pp 455-477

  40. Gianelli I, Defeo O (2017) Uruguayan fisheries under an increasingly globalized scenario: long-term landings and bioeconomic trends. Fish Res 190:53–60

    Google Scholar 

  41. Gianelli I, Martínez G, Defeo O (2015) An ecosystem approach to small-scale co-managed fisheries: the yellow clam fishery in Uruguay. Mar Policy 62:196–202

    Google Scholar 

  42. Gianelli I, Ortega L, Defeo O (2019a) Modeling short-term fishing dynamics in a small-scale intertidal shellfishery. Fish Res 209:242–250

    Google Scholar 

  43. Gianelli I, Ortega L, Marín Y, Piola AR, Defeo O (2019b) Evidence of ocean warming in Uruguay’s fisheries landings: the mean temperature of the catch approach. Mar Ecol Prog Ser. https://doi.org/10.3354/meps13035

  44. Goni GJ, Bringas F, DiNezio PN (2011) Observed low frequency variability of the Brazil current front. J Geophys Res 116:C10037. https://doi.org/10.1029/2011JC007198

    Article  Google Scholar 

  45. Grimm AM, Barros VR, Doyle ME (2000) Climate variability in Southern South America associated with El Niño and La Niña events. J Clim 13:35–58

    Google Scholar 

  46. Gruber N (2011) Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philos Trans Royal Soc A 369:1980–1996

    Google Scholar 

  47. Guerrero RA, Piola AR, Fenco H et al (2014) The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: satellite observations. J Geophys Res Oceans 119:7794–7810

    Google Scholar 

  48. Hansen JE (2004) Anchoíta (Engraulis anchoita). In: Sánchez RP, Bezzi SI (eds) El Mar Argentino y sus recursos pesqueros. Inst Nac Inv Des Pesq, Mar del Plata, pp 101–115

  49. Hobday AJ, Pecl GT (2014) Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Rev Fish Biol Fisher 24:415–425

    Google Scholar 

  50. Hoegh-Guldberg O, Jacob D, Taylor M et al (2018) Impacts of 1.5°C global warming on natural and human systems. In: Global warming of 1.5°C, an IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change http://report.ipcc.ch/sr15/pdf/sr15_chapter3.pdf. (Accessed October 29, 2018)

  51. Hu Y, Tao L, Liu J (2013) Poleward expansion of the Hadley circulation in CMIP5 simulations. Adv Atmos Sci 30:790–795

    Google Scholar 

  52. IPCC (2013) Intergovernmental Panel on Climate Change Climate Change 2013: the physical science basis, summary for policy makers. WG1 contribution to IPCC AR5 Intergovernmental Panel on Climate Change (2013)

  53. Jablonski S (2007) The Brazilian sardine. Is there any room for modelling? Pan-Am J Aquat Sci 2:86–93

    Google Scholar 

  54. Karpechko AY, Gillet NP, Gray LJ, Dall’Amico M (2010) Influence of ozone recovery and greenhouse gas increases on southern hemisphere circulation. J Geophys Res: Atmospheres 115:D22117

    Google Scholar 

  55. Kim YH, Min SK, Son SW, Choi J (2017) Attribution of the local Hadley cell widening in the Southern Hemisphere. Geophys Res Lett 44:1015–1024

    Google Scholar 

  56. Lago LS, Saraceno M, Martos P et al (2019) On the wind contribution to the variability of ocean currents over wide continental shelves: a case study on the northern Argentine continental shelf. J Geophys Res Oceans 124:7457–7472

    Google Scholar 

  57. Lee D, Son S, Kim W et al (2018) Spatio-temporal variability of the habitat suitability index for chub mackerel (Scomber japonicus) in the East/Japan Sea and the South Sea of South Korea. Remote Sens 10:938

    Google Scholar 

  58. Liebmann B, Vera CS, Carvalho LMV et al (2004) An observed trend in central south American precipitation. J Clim 17:4357–4367

    Google Scholar 

  59. Lorenzo MI, Defeo O (2015) The biology and fishery of hake (Merluccius hubbsi) in the Argentinean-Uruguayan common fishing zone of the Southwest Atlantic Ocean. In: Arancibia H (ed) Hakes: biology and exploitation. John Wiley & Sons, Chichester, pp 185–210

    Google Scholar 

  60. Lumpkin R, Garzoli S (2011) Interannual to decadal changes in the western South Atlantic’s surface circulation. J Geophys Res 116:C01014. https://doi.org/10.1029/2010JC006285

    Article  Google Scholar 

  61. Lutz VA, Segura V, Dogliotti AI et al (2010) Primary production in the Argentine Sea during spring estimated by field and satellite models. J Plankton Res 32:181–195

    Google Scholar 

  62. Manta G, de Mello S, Trinchin R et al (2018) The 2017 record marine heatwave in the Southwestern Atlantic Shelf. Geophys Res Lett 45:12,449–12,456

    Google Scholar 

  63. Martínez A, Méndez S, Fabre A, Ortega L (2017) Intensificación de floraciones de dinoflagelados marinos en Uruguay Intensification of marine dinoflagellates blooms in Uruguay. INNOTEC (Uruguay) 13:19–25

    Google Scholar 

  64. Martín-Gómez V, Barreiro M (2017) Effect of future climate change on the coupling between the tropical oceans and precipitation over Southeastern South America. Clim Chang 141:315–329

    Google Scholar 

  65. Martins IM, Gasalla MA (2018) Perceptions of climate and ocean change impacting the resources and livelihood of small-scale fishers in the South Brazil Bight. Clim Chang 147:441–456

    Google Scholar 

  66. Matano RP, Palma ED, Piola AR (2010) The influence of the Brazil and Malvinas currents on the Southwestern Atlantic Shelf circulation. Ocean Sci 6:983–995

    Google Scholar 

  67. Matano RP, Combes V, Piola AR et al (2014) The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: numerical simulations. J Geophys Res Oceans 119:7949–7968

    Google Scholar 

  68. McLachlan A, Defeo O (2018) The ecology of sandy shores. Elsevier, Academic Press, London 560 pp

    Google Scholar 

  69. Möller OO (1996) Hydrodynamique de La Lagune dos Patos: Mesures et modélisation. Dissertation, Université Bordeaux I

  70. Möller OO, Piola AR, Freitas AC, Campos EJ (2008) The effects of river discharge and seasonal winds on the shelf off southeastern South America. Cont Shelf Res 28:1607–1624

    Google Scholar 

  71. Oliver EC, Donat MG, Burrows MT et al (2018) Longer and more frequent marine heatwaves over the past century. Nat Commun 9:1324

    Google Scholar 

  72. Ortega L, Castilla JC, Espino M et al (2012) Large-scale and long-term effects of fishing, market price and climate on two South American sandy beach clam species. Mar Ecol Prog Ser 469:71–85

    Google Scholar 

  73. Ortega L, Celentano E, Delgado E et al (2016) Climate change influences on abundance, individual size and body abnormalities in a sandy beach clam. Mar Ecol Prog Ser 545:203–213

    Google Scholar 

  74. Pacariz SV, Hátún H, Jacobsen JA et al (2016) Nutrient-driven poleward expansion of the Northeast Atlantic mackerel (Scomber scombrus) stock: a new hypothesis. Elem Sci Anthr 4:000105

    Google Scholar 

  75. Palma ED, Matano RP, Piola AR (2004) A numerical study of the Southwestern Atlantic Shelf circulation: barotropic response to tidal and wind forcing. J Geophys Res 109:C08014. https://doi.org/10.1029/2004JC002315

    Article  Google Scholar 

  76. Palma ED, Matano RP, Piola AR (2008) A numerical study of the Southwestern Atlantic Shelf circulation: stratified ocean response to local and offshore forcing. J Geophys Res 113:C11010. https://doi.org/10.1029/2007JC004720

    Article  Google Scholar 

  77. Pauly D, Cheung WWL (2018) Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Glob Change Biol 24:e15–e26

    Google Scholar 

  78. Pauly D, Christensen V, Guénette S et al (2002) Towards sustainability in world fisheries. Nature 418:689–695

    Google Scholar 

  79. Pecl GT, Araújo MB, Bell JD et al (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355:eaai9214

    Google Scholar 

  80. Pérez-Ramírez M, Castrejón M, Gutiérrez NL, Defeo O (2016) The Marine Stewardship Council certification in Latin America and the Caribbean: a review of experiences, potentials and pitfalls. Fish Res 182:50–58

    Google Scholar 

  81. Pezzi LP, Cavalcanti IFA (2001) The relative importance of ENSO and tropical Atlantic sea surface temperature anomalies for seasonal precipitation over South America: a numerical study. Clim Dyn 17:205–212

    Google Scholar 

  82. Pinsky ML, Reygondeau G, Caddell R et al (2018) Preparing ocean governance for species on the move. Science 360:1189–1191

    Google Scholar 

  83. Piola AR, Campos EJ, Möller OO et al (2000) Subtropical shelf front off eastern South America. J Geophys Res Oceans 105:6565–6578

    Google Scholar 

  84. Piola AR, Matano RP, Palma ED et al (2005) The influence of the Plata River discharge on the western South Atlantic shelf. Geophys Res Lett 32:L01603

    Google Scholar 

  85. Piola AR, Möller OO, Guerrero RA et al (2008a) Variability of the subtropical shelf front off eastern South America: winter 2003 and summer 2004. Cont Shelf Res 28:1639–1648

    Google Scholar 

  86. Piola AR, Romero SI, Zajaczkovski U (2008b) Space-time variability of the Plata plume inferred from ocean color. Cont Shelf Res 28:1556–1567

    Google Scholar 

  87. Pittman J, Gianelli I, Trinchín R et al (2019) Securing sustainable small-scale fisheries through comanagement: the yellow clam fishery in Uruguay. In: Westlund L, Zelasney J (eds) Securing sustainable small-scale fisheries: sharing good practices from around the world. Fisheries and Aquaculture Technical Paper No. 644. Rome, pp 9-37

  88. Poloczanska ES, Burrows MT, Brown CJ et al (2016) Responses of marine organisms to climate change across oceans. Front Mar Sci 3:62

    Google Scholar 

  89. Popova E, Yool A, Byfield V et al (2016) From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots. Glob Change Biol 22:2038–2053

    Google Scholar 

  90. Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97

    Google Scholar 

  91. Prenski LB, Sesar G, Landa PA, Medina Foucher CA, Laco ML (2016) Public Certification Report. Assessment against MSC Principles and Criteria for: Argentine anchovy (Engraulis anchoita), bonaerense stock, semi-pelagic mid-water trawl net fishery. Organización Internacional Agropecuaria. 234 pp.

  92. Rivas AL (1997) Current meter observations in the Argentine continental shelf. Cont Shelf Res 17:391–406

    Google Scholar 

  93. Rivas AL, Piola AR (2002) Vertical stratification at the shelf off northern Patagonia. Cont Shelf Res 22:1549–1558

    Google Scholar 

  94. Roemmich D, Church J, Gilson J et al (2015) Unabated planetary warming and its ocean structure since 2006. Nat Clim Chang 5:240–245

    Google Scholar 

  95. Sánchez E, Solman S, Remedio ARC et al (2015) Regional climate modelling in CLARIS-LPB: a concerted approach towards twenty first century projections of regional temperature and precipitation over South America. Clim Dyn 45:2193–2212

    Google Scholar 

  96. Saraux C, van Beveren E, Brosset P et al (2019) Small pelagic fish dynamics: a review of mechanism in the Gulf of Lions. Deep Sea Res II 159:52–61

    Google Scholar 

  97. Schoeman DS, Schlacher TA, Defeo O (2014) Climate-change impacts on sandy-beach biota: crossing a line in the sand. Glob Change Biol 20:2383–2392

    Google Scholar 

  98. Son SW, Han BR, Garfinkel CI et al (2018) Tropospheric jet response to Antarctic ozone depletion: an update with Chemistry-Climate Model Initiative (CCMI) models. Environ Res Lett 13:054024

    Google Scholar 

  99. Stenseth NC, Mysterud A, Ottersen G et al (2002) Ecological effects of climate fluctuations. Science 297:1292–1296

    Google Scholar 

  100. Stock CA, Alexander MA, Bond NA et al (2011) On the use of IPCC-class models to assess the impact of climate on living marine resources. Prog Oceanogr 88:1–27

    Google Scholar 

  101. Strub PT, James C, Combes V et al (2015) Altimeter-derived seasonal circulation on the southwest Atlantic shelf: 27°-43°S. J Geophys Res Oceans 120. https://doi.org/10.1002/2015JC010769

  102. Sumaila UR, Cheung WWL, Lam VWY et al (2011) Climate change impacts on the biophysics and economics of world fisheries. Nature Clim Change 1:449–456

    Google Scholar 

  103. Tao L, Hu Y, Liu J (2016) Anthropogenic forcing on the Hadley circulation in CMIP5 simulations. Clim Dyn 46:3337–3350

    Google Scholar 

  104. Valla D, Piola AR (2015) Evidence of upwelling events at the northern Patagonian shelf break. J Geophys Res Oceans 120:7635–7656

    Google Scholar 

  105. Van Beveren E, Fromentin JM, Rouyer T et al (2016) The fisheries history of small pelagics in the Northern Mediterranean. ICES J Mar Sci 73:1474–1484

    Google Scholar 

  106. Van Gennip SJ, Popova EE, Yool A et al (2017) Going with the flow: the role of ocean circulation in global marine ecosystems under a changing climate. Glob Change Biol 23:2602–2617

    Google Scholar 

  107. Vera CS, Díaz L (2015) Anthropogenic influence on summer precipitation trends over South America in CMIP5 models. Int J Climatol 35:3172–3177

    Google Scholar 

  108. Vergés A, Steinberg PD, Hay ME et al (2014) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc Royal Soc B: Biol Sci 281:20140846. https://doi.org/10.1098/rspb.2014.0846

    Article  Google Scholar 

  109. Vizy EK, Cook KH (2016) Understanding long-term (1982-2013) multidecadal change in the equatorial and subtropical south Atlantic climate. Clim Dyn 46:2087–2113

    Google Scholar 

  110. Wu L, Cai W, Zhang L et al (2012) Enhanced warming over the global subtropical western boundary currents. Nat Clim Chang 2:161–166

    Google Scholar 

  111. Yang H, Lohmann G, Wei W et al (2016) Intensification and poleward shift of subtropical western boundary currents in a warming climate. J Geophys Res Oceans 121:4928–4945

    Google Scholar 

  112. Yang H, Lohmann G, Krebs-Kanzow U et al (2020) Poleward shift of the major ocean gyres detected in a warming climate. Geophys Res Lett. https://doi.org/10.1029/2019GL085868

Download references

Acknowledgments

The support of the Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP, Argentina) is acknowledged. Three anonymous referees provided important suggestions that substantially strengthened the manuscript.

Funding

This research was partially funded by project VOCES from the Inter-American Institute for Global Change Research (CRN3070, which was funded by the US NSF grant GEO-1128040). B.F. was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Agencia Nacional de Promoción Científica y Tecnológica (ANCYPT-grant PICT 2015-0508), Argentina. O.D. was also supported by Comisión Sectorial de Investigación Científica (CSIC Grupos ID 32), Uruguay. L.P. was supported by CAPES project 23038.004304/2014-28, CNPq project 443013/2018-7, and fellowship 304009/2016-4, Brazil.

Author information

Affiliations

Authors

Contributions

The review emerged from the collaboration of experts in different disciplines key for the scope of the paper from Argentina, Uruguay, and Brazil. BF conceived and developed the idea and design of the original manuscript; led Sections 1, 2, and 5; helped to connect the various contributions of each discipline; prepared the original manuscript; and critically revised all versions of manuscript. MB and HY led Sections 3.1 and 4.1. AP and BF led Sections 3.2 and 4.2. AP also made substantial contributions and revised critically all versions of manuscript. OD, LO, and IG led Sections 3.3 and 4.3; refined the content and scope of the original manuscript; made substantial contributions; and critically revised all versions of the manuscript. BF adapted Figure 1 and prepared Figure 2, HY developed Figure 4, IG prepared Figures 3 and 5, and OD prepared Supplementary Table S1. All authors contributed according their expertise and approved the final manuscript.

Corresponding author

Correspondence to Bárbara C. Franco.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Franco, B.C., Defeo, O., Piola, A.R. et al. Climate change impacts on the atmospheric circulation, ocean, and fisheries in the southwest South Atlantic Ocean: a review. Climatic Change 162, 2359–2377 (2020). https://doi.org/10.1007/s10584-020-02783-6

Download citation

Keywords

  • Climate change
  • Southwest South Atlantic Ocean
  • Atmospheric circulation
  • Ocean circulation
  • Brazil Current
  • Fisheries