Climatic Change

, Volume 112, Issue 2, pp 189–215 | Cite as

Elevation gradients of European climate change in the regional climate model COSMO-CLM

  • S. Kotlarski
  • T. Bosshard
  • D. Lüthi
  • P. Pall
  • C. Schär


A transient climate scenario experiment of the regional climate model COSMO-CLM is analyzed to assess the elevation dependency of 21st century European climate change. A focus is put on near-surface conditions. Model evaluation reveals that COSMO-CLM is able to approximately reproduce the observed altitudinal variation of 2 m temperature and precipitation in most regions and most seasons. The analysis of climate change signals suggests that 21st century climate change might considerably depend on elevation. Over most parts of Europe and in most seasons, near-surface warming significantly increases with elevation. This is consistent with the simulated changes of the free-tropospheric air temperature, but can only be fully explained by taking into account regional-scale processes involving the land surface. In winter and spring, the anomalous high-elevation warming is typically connected to a decrease in the number of snow days and the snow-albedo feedback. Further factors are changes in cloud cover and soil moisture and the proximity of low-elevation regions to the sea. The amplified warming at high elevations becomes apparent during the first half of the 21st century and results in a general decrease of near-surface lapse rates. It does not imply an early detection potential of large-scale temperature changes. For precipitation, only few consistent signals arise. In many regions precipitation changes show a pronounced elevation dependency but the details strongly depend on the season and the region under consideration. There is a tendency towards a larger relative decrease of summer precipitation at low elevations, but there are exceptions to this as well.


Snow Cover Regional Climate Model Surface Albedo Precipitation Change Elevation Gradient 



The COSMO-CLM simulations analyzed have been conducted at the Swiss National Supercomputing Centre (CSCS). We are indebted to the COSMO and CLM communities for providing access to and support for the model, as well as to MeteoSwiss and ECMWF for providing access to the ERA40 data set. The ENSEMBLES data used in this work was funded by the EU FP6 Integrated Project ENSEMBLES (Contract number 505539) whose support is gratefully acknowledged. We also acknowledge the E-OBS dataset from the ENSEMBLES project and the data providers in the ECA&D project ( Partial funding for this study has been provided by the Swiss National Science Foundation via NCCR Climate. We are thankful to the Center for Climate Systems Modeling (C2SM) for modeling support and to Dr. Tracy Ewen for her valuable input.

Supplementary material

10584_2011_195_MOESM1_ESM.pdf (2.4 mb)
ESM 1 (PDF 2482 kb)


  1. Adam JC, Lettenmaier DP (2003) Adjustment of global gridded precipitation for systematic bias. J Geophys Res 108(D9):4257. doi: 10.1029/2002JD002499 CrossRefGoogle Scholar
  2. Appenzeller C, Begert M, Zenklusen E, Scherrer SC (2008) Monitoring climate at Jungfraujoch in the high Swiss Alpine region. Science Tot Env 391:262–268CrossRefGoogle Scholar
  3. Barry RG (2008) Mountain Weather and Climate. 3 rd edn, Cambridge University PressGoogle Scholar
  4. Beniston M, Rebetez M (1996) Regional behavior of minimum temperatures in Switzerland for the period 1979–1993. Theor Appl Climatol 53:231–243CrossRefGoogle Scholar
  5. Beniston M, Diaz HF, Bradley RS (1997) Climatic change at high elevation sites: an overview. Clim Change 36:233–251CrossRefGoogle Scholar
  6. Brockhaus P (2009) Role and representation of moist convection in a regional climate model. PhD thesis. Swiss Federal Institute of Technology (ETH) Zurich, Diss. ETH No. 18624, 144 ppGoogle Scholar
  7. Ceppi P, Scherrer SC, Fischer AM, Appenzeller C (2010) Revisiting Swiss temperature trends 1959–2008. Int J Clim, accepted. doi: 10.1002/joc.2260
  8. Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81:1–16. doi: 10.1007/s10584-006-9211-6 CrossRefGoogle Scholar
  9. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81:7–30. doi: 10.1007/s10584-006-9210-7 CrossRefGoogle Scholar
  10. Daly C, Neilson RP, Phillips DL (1994) A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33:140–158CrossRefGoogle Scholar
  11. Davies HC (1976) A lateral boundary formulation for multi-level prediction models. Q J Roy Meteor Soc 102:405–418Google Scholar
  12. Diaz HF, Bradley RS (1997) Temperature variations during the last century at high elevation sites. Clim Change 36:253–279CrossRefGoogle Scholar
  13. Diaz HF, Grosjean M, Graumlich L (2003) Climate variability and change in high elevation regions: past, present and future. Clim Change 59:1–4CrossRefGoogle Scholar
  14. Durand Y, Giraud G, Laternser M, Etchevers P, Mérindol L, Lesaffre B (2009) Reanalysis of 47 years of climate in the french Alps (1958–2005): climatology and trends for snow cover. J Appl Meteorol Climatol 48:2487–2512. doi: 10.1175/2009JAMC1810.1 CrossRefGoogle Scholar
  15. EEA (2009) Regional climate change and adaptation – The Alps facing the challenge of changing water resources. European Environment Agency Report No. 8/2009, Copenhagen, 143 ppGoogle Scholar
  16. Elsasser H, Bürki R (2002) Climate change as a threat to tourism in the Alps. Clim Res 20:253–257CrossRefGoogle Scholar
  17. Frei C, Schär C (1998) A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int J Climatol 18:873–900CrossRefGoogle Scholar
  18. Frei C, Davies HC, Gurtz J, Schär C (2000) Climate dynamics and extreme precipitation and flood events in central Europe. Integr Assess 1:281–299CrossRefGoogle Scholar
  19. Frierson DMW (2006) Robust increases in midlatitude static stability in simulations of global warming. Geophys Res Lett 33:L24816. doi: 10.1029/2006GL027504 CrossRefGoogle Scholar
  20. Fyfe JC, Flato GM (1999) Enhanced climate change and its detection over the rocky mountains. J Clim 12:230–243CrossRefGoogle Scholar
  21. Giorgi F, Hurrell JW, Marinucci MR (1997) Elevation dependency of the surface climate change signal: a model study. Clim Change 10:288–296Google Scholar
  22. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175–183Google Scholar
  23. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168CrossRefGoogle Scholar
  24. Hall A (2004) The role of surface Albedo feedback in climate. J Clim 17:1550–1568CrossRefGoogle Scholar
  25. Hantel M, Ehrendorfer M, Haslinger A (2000) Climate sensitivity of snow cover duration in Austria. Int J Climatol 20:615–640CrossRefGoogle Scholar
  26. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi: 10.1029/2008JD010201 CrossRefGoogle Scholar
  27. Held IM, Soden BJ (2000) Water vapor feedback and global warming. Annu Rev Energy Environ 25:441–475CrossRefGoogle Scholar
  28. Hiebl J, Auer I, Böhm R, Schöner W, Maugeri M, Lentini G, Spinoni J, Brunetti M, Nanni T, Tadić MP, Bihari Z, Dolinar M, Müller-Westermeier G (2009) A high-resolution 1961–1990 monthly temperature climatology for the greater Alpine region. Meteorol Z 18(5):507–530. doi: 10.1127/0941-2948/2009/0403 CrossRefGoogle Scholar
  29. Hohenegger C, Brockhaus P, Bretherton CS, Schär C (2009) The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J Clim 22:5003–5020CrossRefGoogle Scholar
  30. Houze RA (1993) Cloud Dynamics. Academic Press, San Diego. International Geophysics Series, Volume 53, 570 ppGoogle Scholar
  31. Im E-S, Coppola E, Giorgi F, Bi X (2010) Local effects of climate change over the Alpine region: A study with a high resolution regional climate model with a surrogate climate change signal. Geophys Res Lett 37:L05704. doi: 10.1029/2009GL041801 CrossRefGoogle Scholar
  32. IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA, 996 ppGoogle Scholar
  33. Jaeger EB, Anders I, Lüthi D, Rockel B, Schär C, Seneviratne S (2008) Analysis of ERA40-driven CLM simulations for Europe. Meteorol Z 17(4):1–19. doi: 10.1127/0941-2948/2008/0301 CrossRefGoogle Scholar
  34. Kim J (2001) A nested modeling study of elevation-dependent climate change signals in California induced by increased atmospheric CO2. Geophys Res Lett 28(15):2951–2954CrossRefGoogle Scholar
  35. Kotlarski S, Block A, Böhm U, Jacob D, Keuler K, Knoche R, Rechid D, Walter A (2005) Regional climate model simulations as input for hydrological applications: evaluation of uncertainties. Adv Geosciences 5:119–125CrossRefGoogle Scholar
  36. Kotlarski S, Paul F, Jacob D (2010) Forcing a distributed glacier mass balance model with the regional climate model REMO, part I: climate model evaluation. J Clim 23(6):1589–1606. doi: 10.1175/2009JCLI2711.1 CrossRefGoogle Scholar
  37. Laternser MC (2002) Snow and avalanche climatology of Switzerland. PhD thesis. Swiss Federal Institute of Technology (ETH) Zurich, Diss. ETH No. 14493, 137 ppGoogle Scholar
  38. Leung LR, Ghan SJ (1999) Pacific northwest climate sensitivity simulated by a regional climate model driven by a GCM. Part II: 2xCO2 simulations. J Clim 12:2031–2053CrossRefGoogle Scholar
  39. López-Moreno JI, Goyette S, Beniston M (2008) Climate change prediction over complex areas: spatial variability of uncertainties and predictions over the Pyrenees from a set of regional climate models. Int J Climatol 28:1535–1550CrossRefGoogle Scholar
  40. Marty C, Philipona R, Fröhlich C, Ohmura A (2002) Altitude dependence of surface radiation fluxes and cloud forcing in the alps: results from the alpine surface radiation budget network. Theor Appl Climatol 72:137–155CrossRefGoogle Scholar
  41. Minder JR, Mote PW, Lundquist JD (2010) Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. J Geophys Res 115:D14122. doi: 10.1029/2009JD013493 CrossRefGoogle Scholar
  42. Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Yong Jung T, Kram T, Lebre La Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, p 599Google Scholar
  43. Pepin N, Losleben M (2002) Climate change in the Colorado rocky mountains: free air versus surface temperature trends. Int J Climatol 22:311–329. doi: 10.1002/joc.740 CrossRefGoogle Scholar
  44. Prömmel K, Geyer B, Jones JM, Widmann M (2010) Evaluation of the skill and added value of a reanalysis-driven regional simulation for Alpine temperature. Int J Climatol 30:760–773. doi: 10.1002/joc.1916 Google Scholar
  45. Richner H, Phillips PD (1984) A comparison of temperature from mountaintops and the free atmosphere – their diurnal variation and mean difference. Mon Weather Rev 112(7):1328–1340CrossRefGoogle Scholar
  46. Ritter B, Geleyn J-F (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120:303–325CrossRefGoogle Scholar
  47. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17(4):347–348. doi: 10.1127/0941-2948/2008/0309 CrossRefGoogle Scholar
  48. Roe GH (2005) Orographic precipitation. Annu Rev Earth Planet Sci 33:645–671. doi: 10.1146/ CrossRefGoogle Scholar
  49. Rolland C (2003) Spatial and seasonal variations of air temperature lapse rates in Alpine regions. J Clim 16:1032–1046CrossRefGoogle Scholar
  50. Salathé EP, Leung LR, Qian Y, Zhang Y (2010) Regional climate model projections for the State of Washington. Clim Change 102:51–75. doi: 10.1007/s10584-010-9849-y CrossRefGoogle Scholar
  51. Santer BD et al (2005) Amplification of surface temperature trends and variability in the tropical atmosphere. Science 309:1551–1556. doi: 10.1126/science.1114867 CrossRefGoogle Scholar
  52. Schär C, Frei C, Lüthi D, Davies HC (1996) Surrogate climate-change scenarios for regional climate models. Geophys Res Lett 23:669–672. doi: 10.1029/96GL00265 CrossRefGoogle Scholar
  53. Schär C, Davies TD, Frei C, Wanner H, Widmann M, Wild M, Davies HC (1998) Current Alpine Climate. In: Cebon P, Dahinden U, Davies HC, Imboden DM, Jäger CC (eds) Views from the Alps: Regional perspectives on climate change. MIT Press, Boston, pp 21–72Google Scholar
  54. Schröter D et al (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310(5752):1333–1337. doi: 10.1126/science.1115233 CrossRefGoogle Scholar
  55. Schwarb M (2000) The Alpine Precipitation Climate—Evaluation of a high-resolution analysis scheme using comprehensive rain-gauge data. PhD thesis. Swiss Federal Institute of Technology (ETH) Zurich, Diss. ETH No. 13911, 131 ppGoogle Scholar
  56. Schwarb M, Daly C, Frei C, Schär C (2001) Mean annual and seasonal precipitation throughout the European Alps 1971–1990. In: Hydrological Atlas of Switzerland. Plates 2.6 and 2.7. Swiss Federal Office for Water and Geology, BernGoogle Scholar
  57. Seidel DJ, Free M (2003) Comaprison of lower-tropospheric temperature climatologies and trends at low and high elevation radiosonde sites. Clim Change 59:53–74CrossRefGoogle Scholar
  58. Sevruk B (1997) Regional dependency of the precipitation-altitude relationship in the Swiss Alps. Clim Change 36:355–369CrossRefGoogle Scholar
  59. Smith RB (1979) The influence of mountains on the atmosphere. Adv Geophys 21:87–230CrossRefGoogle Scholar
  60. Snyder MA, Bell JL, Sloan LC, Duffy PB, Govindasamy B (2002) Climate responses to a doubling of atmospheric carbon dioxide for a climatically vulnerable region. Geophys Res Lett 29(11):9. doi: 10.1029/2001GL014431 CrossRefGoogle Scholar
  61. Snyder MA, Sloan LC (2005) Transient future climate over the Western United States using a regional climate model. Earth Interact 9:1–21CrossRefGoogle Scholar
  62. Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean-atmosphere models. J Clim 19:3354–3360CrossRefGoogle Scholar
  63. Steppeler J, Doms G, Schättler U, Bitzer H, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor Atmos Phys 82:75–96CrossRefGoogle Scholar
  64. Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. PNAS 102(23):8245–8250. doi: 10.1073/pnas.0409902102 CrossRefGoogle Scholar
  65. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1799CrossRefGoogle Scholar
  66. Uppala SM, Kallberg PW, Simmons AJ, Andrae U, da Costa BV, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J Roy Meteor Soc 131:2961–3012CrossRefGoogle Scholar
  67. van der Linden P, Mitchell JFB (2009) ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3 PB, UK. 160 ppGoogle Scholar
  68. Varney BM (1920) Monthly variations of the precipitation-altitude relation in the Central Sierra Nevada of California. Mon Weather Rev 48(11):648–650CrossRefGoogle Scholar
  69. Verbunt M, Walser A, Gurtz J, Montani A, Schär C (2007) Probabilistic flood forecasting with a limited-area ensemble prediction system. J Hydrometeorol 8(4):897–909CrossRefGoogle Scholar
  70. Vidale PL, Lüthi D, Frei C, Seneviratne SI, Schär C (2003) Predictability and uncertainty in a regional climate model. J Geophys Res 108(D18):4586. doi: 10.1029/2002JD002810 CrossRefGoogle Scholar
  71. Viviroli D, Dürr HH, Messerli B, Meybeck M, Weingartner R (2007) Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour Res 43(7):W07447. doi: 10.1029/2006WR005653 CrossRefGoogle Scholar
  72. Vuille M, Bradley RS (2000) Mean annual temperature trends and their vertical structure in the tropical Andes. Geophys Res Lett 27(23):3885–3888CrossRefGoogle Scholar
  73. Wastl C, Zängl G (2007) Analysis of the climatological precipitation gradient between the Alpine foreland and the northern Alps. Met Z 16(5):541–552CrossRefGoogle Scholar
  74. Wastl C, Zängl G (2008) Analysis of mountain-valley precipitation differences in the Alps. Met Z 17(3):311–321CrossRefGoogle Scholar
  75. Weber RO, Talkner P, Stefanicki G (1994) Asymetric diurnal temperature change in the Alpine region. Geophys Res Lett 21(8):673–676CrossRefGoogle Scholar
  76. Weber RO, Talkner P, Auer I, Böhm R, Gajić-Čapka M, Zaninović K, Brázdil R, Faško P (1997) 20th-Century changes of temperature in the mountain regions of central Europe. Clim Change 36:327–344CrossRefGoogle Scholar
  77. Weischet W (1979) Einführung in die Allgemeine Klimatologie, 2nd edn. Teubner, StuttgartGoogle Scholar
  78. Wild M, Ohmura A, Cubasch U (1997) GCM-simulated surface energy fluxes in climate change experiments. J Clim 10:3093–3110CrossRefGoogle Scholar
  79. Wilks DS (2006) Statistical Methods in the Atmospheric Sciences. Second Edition. International Geophysics Series Vol. 91. Elsevier Inc., 627 ppGoogle Scholar
  80. You Q, Kang S, Pepin N, Flügel W-A, Yan Y, Behrawan H, Huang J (2010) Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Glob Planet Change 71:124–133. doi: 10.1016/j.gloplacha.2010.01.020 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • S. Kotlarski
    • 1
  • T. Bosshard
    • 1
  • D. Lüthi
    • 1
  • P. Pall
    • 1
  • C. Schär
    • 1
  1. 1.Institute for Atmospheric and Climate ScienceETH ZurichZürichSwitzerland

Personalised recommendations