Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Climatic Change
  3. Article

Global changes in extreme events: regional and seasonal dimension

  • Open access
  • Published: 22 July 2011
  • Volume 110, pages 669–696, (2012)
  • Cite this article
Download PDF

You have full access to this open access article

Climatic Change Aims and scope Submit manuscript
Global changes in extreme events: regional and seasonal dimension
Download PDF
  • Boris Orlowsky1 &
  • Sonia I. Seneviratne1 
  • 7640 Accesses

  • 497 Citations

  • 20 Altmetric

  • 1 Mention

  • Explore all metrics

Abstract

This study systematically analyzes the complete IPCC AR4 (CMIP3) ensemble of GCM simulations with respect to changes in extreme event characteristics at the end of the 21st century compared to present-day conditions. It complements previous studies by investigating a more comprehensive database and considering seasonal changes beside the annual time scale. Confirming previous studies, the agreement between the GCMs is generally high for temperature-related extremes, indicating increases of warm day occurrences and heatwave lengths, and decreases of cold extremes. However, we identify issues with the choice of indices used to quantify heatwave lengths, which do overall not affect the sign of the changes, but strongly impact the magnitude and patterns of projected changes in heatwave characteristics. Projected changes in precipitation and dryness extremes are more ambiguous than those in temperature extremes, despite some robust features, such as increasing dryness over the Mediterranean and increasing heavy precipitation over the Northern high latitudes. We also find that the assessment of projected changes in dryness depends on the index choice, and that models show less agreement regarding changes in soil moisture than in the commonly used ‘consecutive dry days’ index, which is based on precipitation data only. Finally an analysis of the scaling of changes of extreme temperature quantiles with global, regional and seasonal warming shows that much of the extreme quantile changes are due to a seasonal scaling of the regional annual-mean warming. This emphasizes the importance of the seasonal time scale also for extremes. Changes in extreme quantiles of temperature on land scale with changes in global annual mean temperature by a factor of more than 2 in some regions and seasons, implying large changes in extremes in several countries, even for the commonly discussed global 2°C-warming target.

Article PDF

Download to read the full article text

Similar content being viewed by others

Changes in climate extremes by the use of CMIP5 coupled climate models over eastern Himalayas

Article 05 May 2016

Global assessment of spatiotemporal variability of wet, normal and dry conditions using multiscale entropy-based approach

Article Open access 13 June 2022

Extreme hot summers in China in the CMIP5 climate models

Article 08 December 2015

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Climate Sciences
  • Climate-Change Impacts
  • Climate Change
  • Drought
  • Regional Geography
  • World Regional Geography
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Alexander L, Zhang X, Peterson T, Caesar J, Gleason B, Tank A, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson D, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre J (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109

    Article  Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Hollt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95

    Article  Google Scholar 

  • Boe J, Terray L (2008) Uncertainties in summer evapotranspiration changes over Europe and implications for regional climate change. Geophys Res Lett 35:L05702

    Article  Google Scholar 

  • Burke EJ, Brown SJ (2008) Evaluating uncertainties in the projection of future drought. J Hydrometeorol 9(2):292–299. doi:10.1175/2007JHM929.1

    Article  Google Scholar 

  • Corti T, Muccione V, Köllner-Heck P, Bresch D, Seneviratne S (2009) Simulating past droughts and associated building damages in France. Hydrol Earth Syst Sci 13(9):1739–1747

    Article  Google Scholar 

  • Dai A (2010) Drought under global warming: a review. WIREs Clim Change. doi:10.1002/wcc.81

    Google Scholar 

  • Diffenbaugh NS, Pal JS, Giorgi F, Gao X (2007) Heat stress intensification in the Mediterranean climate change hotspot. Geophys Res Lett 34:L11706. doi:10.1029/2007GL030000

    Article  Google Scholar 

  • Easterling DR, Wallis TWR, Lawrimore JH, Heim J, Richard R (2007) Effects of temperature and precipitation trends on U.S. drought. Geophys Res Lett 34(20):L20709. doi:10.1029/2007GL031541

    Article  Google Scholar 

  • Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nature Geosci 3(6):398–403. doi:10.1038/ngeo866

    Article  Google Scholar 

  • Frich P, Alexander L, Della-Marta P, Gleason B, Haylock M, Tank AK, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212

    Article  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63(2–3):90–104. doi:10.1016/j.gloplacha.2007.09.005, URL http://www.sciencedirect.com/science/article/B6VF0-4PTMXVP-3/2/16911ccab3b18a182d66f8266a15b6cc

    Article  Google Scholar 

  • Halsnaes K, Kühl J, Olesen JE (2007) Turning climate change information into economic and health impacts. Clim Change 81:145–162

    Article  Google Scholar 

  • Hirschi M, Seneviratne SI, Alexandrov V, Boberg F, Boroneant C, Christensen OB, Formayer H, Orlowsky B, Stepanek P (2011) Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nature Geosci 4(1):17–21. doi:10.1038/ngeo1032

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, LeRoy Miller Jr, H, Chen Z (eds) Contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Jaeger E, Seneviratne S (2010) Impact of soil moisture-atmosphere coupling on European climate extremes and trends in a regional climate model. Clim Dyn. doi:10.1007/s00382-010-0780-8

    Google Scholar 

  • Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20(8):1419–1444. doi:10.1175/JCLI4066.1

    Article  Google Scholar 

  • Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23(10):2739–2758. doi:10.1175/2009JCLI3361.1

    Article  Google Scholar 

  • Le Quere C, Raupach MR, Canadell JG, Marland G et al (2009) Trends in the sources and sinks of carbon dioxide. Nature Geosci 2(12):831–836. doi:10.1038/ngeo689

    Article  Google Scholar 

  • Lenton T, Held H, Kriegler E, Hall J, Lucht W, Rahmstorf S, Schellnhuber H (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci 105(6):1786–1793

    Article  Google Scholar 

  • Loarie S, Duffy P, Hamilton H, Asner G, Field C, Ackerly D (2009) The velocity of climate change. Nature 462(7276):1052–1055

    Article  Google Scholar 

  • Lorenz R, Jaeger EB, Seneviratne SI (2010) Persistence of heat waves and its link to soil moisture memory. Geophys Res Lett 37(9):L09703. doi:10.1029/2010GL042764

    Article  Google Scholar 

  • Manning MR, Edmonds J, Emori S, Grubler A, Hibbard K, Joos F, Kainuma M, Keeling RF, Kram T, Manning AC, Meinshausen M, Moss R, Nakicenovic N, Riahi K, Rose SK, Smith S, Swart R, van Vuuren DP (2010) Misrepresentation of the IPCC CO2 emission scenarios. Nature Geosci 3(6):376–377. doi:10.1038/ngeo880

    Article  Google Scholar 

  • Mastrandrea M, Field C, Stocker T, Edenhofer O, Ebi K, Frame D, Held H, Kriegler E, Mach K, Matschoss P et al (2010) Guidance note for lead authors of the IPCC fifth assessment report on consistent treatment of uncertainties. Intergovernmental Panel on Climate Change (IPCC), URL https://www.ipcc-wg1.unibe.ch/guidancepaper/ar5_uncertainty-guidance-note.pdf

  • Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458(7242):1158–1162. doi:10.1038/nature08017

    Article  Google Scholar 

  • Menzel A, Sparks T, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A et al (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12(10):1969–1976

    Article  Google Scholar 

  • Mueller B, Seneviratne S, Jimenez C, Corti T, Hirschi M, Balsamo G, Ciais P, Dirmeyer P, Fisher J, Guo Z et al (2011) Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys Res Lett 38(6):L06402

    Article  Google Scholar 

  • Nakicenovic N, Swart R (2001) IPCC special report on emissions scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  • Orlowsky B, Seneviratne SI (2010) Statistical analyses of land-atmosphere feedbacks and their possible pitfalls. J Clim 23(14):3918–3932

    Article  Google Scholar 

  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438(7066):310–317. doi:10.1038/nature04188

    Article  Google Scholar 

  • Seneviratne SI, Luethi AD, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443:205–209

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL, Jaeger EB, Hirschi M, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Sci Rev 99(3–4):125–161

    Article  Google Scholar 

  • Sheffield J, Wood E (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105. doi:10.1007/s00382-007-0340-z

    Article  Google Scholar 

  • Sherwood SC, Huber M (2010) An adaptability limit to climate change due to heat stress. Proc Natl Acad Sci 107(21):9552–9555. doi:10.1073/pnas.0913352107, URL http://www.pnas.org/content/107/21/9552.abstract, http://www.pnas.org/content/107/21/9552.full.pdf+html

    Article  Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes—an intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79(3):185–211

    Article  Google Scholar 

  • van Oldenborgh GJ, Drijfhout S, van Ulden A, Haarsma R, Sterl A, Severijns C, Hazeleger W, Dijkstra H (2009) Western Europe is warming much faster than expected. Clim Past 5:1–5

    Article  Google Scholar 

  • Wang G (2005) Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment. Clim Dyn 25:739–753. doi:10.1007/s00382-005-0057-9

    Article  Google Scholar 

  • Zhang J, Wang WC, Wu L (2009) Land-atmosphere coupling and diurnal temperature range over the contiguous United States. Geophys Res Lett 36(6):L06706. doi:10.1029/2009GL037505

    Article  Google Scholar 

  • Zhang X, Hegerl G, Zwiers F, Kenyon J (2005) Avoiding inhomogeneity in percentile-based indices of temperature extremes. J Clim 18(11):1641–1651

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute for Atmospheric and Climate Science, ETH Zurich, Universitaetsstr. 16, 8092, Zurich, Switzerland

    Boris Orlowsky & Sonia I. Seneviratne

Authors
  1. Boris Orlowsky
    View author publications

    Search author on:PubMed Google Scholar

  2. Sonia I. Seneviratne
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Boris Orlowsky.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 6.59 MB)

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Orlowsky, B., Seneviratne, S.I. Global changes in extreme events: regional and seasonal dimension. Climatic Change 110, 669–696 (2012). https://doi.org/10.1007/s10584-011-0122-9

Download citation

  • Received: 30 November 2010

  • Accepted: 18 May 2011

  • Published: 22 July 2011

  • Issue Date: February 2012

  • DOI: https://doi.org/10.1007/s10584-011-0122-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Emission Scenario
  • Extreme Index
  • Northern High Latitude
  • Seasonal Time Scale
  • Annual Time Scale
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

152.53.39.118

Not affiliated

Springer Nature

© 2025 Springer Nature