Skip to main content

Advertisement

Log in

Potential climate change impacts on the probability of wind damage in a south Swedish forest

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

We estimated how the possible changes in wind climate and state of the forest due to climate change may affect the probability of exceeding critical wind speeds expected to cause wind damage within a forest management unit located in Southern Sweden. The topography of the management unit was relatively gentle and the forests were dominated by Norway spruce (Picea abies (L.) Karst.). We incorporated a model relating the site index (SI) to the site productivity into the forest projection model FTM. Using estimated changes in the net primary production (NPP) due to climate change and assuming a relative change in NPP equal to a relative change in the site productivity, we simulated possible future states of the forest under gradual adjustment of SI in response to climate change. We estimated changes in NPP by combining the boreal-adapted BIOMASS model with four regional climate change scenarios calculated using the RCAO model for the period 2071–2100 and two control period scenarios for the period 1961–1990. The modified WINDA model was used to calculate the probability of wind damage for individual forest stands in simulated future states of the forest. The climate change scenarios used represent non-extreme projections on a 100-year time scale in terms of global mean warming. A 15–40% increase in NPP was estimated to result from climate change until the period 2071–2100. Increasing sensitivity of the forest to wind was indicated when the management rules of today were applied. A greater proportion of the calculated change in probability of wind damage was due to changes in wind climate than to changes in the sensitivity of the forest to wind. While regional climate scenarios based on the HadAM3H general circulation model (GCM) indicated no change (SRES A2 emission scenario) or a slightly reduced (SRES B2 emission scenario) probability of wind damage, scenarios based on the ECHAM4/OPYC3 GCM indicated increased probability of wind damage. The assessment should, however, be reviewed as the simulation of forest growth under climate change as well as climate change scenarios are refined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahti T, Hämet-Ahti L, Jalas J (1968) Vegetation zones and their sections in northwestern Europe. Ann Bot Fenn 5:169–211

    Google Scholar 

  • Alexandersson H (2006) Vindstatistik för Sverige 1961–2004. (In Swedish). Reports in Meteorology and Climatology 121, SMHI, SE-60176 Norrköping, Sweden, 47 pp

  • Almeida AC, Maestri R, Landsberg JJ, Scolforo JRS (2003) Linking process-based and empirical forest models in Eucalyptus plantations in Brazil. In: Modelling Forest Systems. CAB International, UK, pp 63–74

    Google Scholar 

  • Andersson M, Dahlin B, Mossberg M (2005) The forest time machine—a multi-purpose forest management decision-support system. Comput Electron Agric 49:114–128

    Article  Google Scholar 

  • Bamberg S, Schwarz W, Tranquillini W (1966) Influence of daylength on the photosynthetic capacity of Stone pine (Pinus cembra L.). Ecology 48:264–269

    Article  Google Scholar 

  • Bergh J, McMurtrie RE, Linder S (1998) Climatic factors controlling the productivity of Norway spruce: a model-based analysis. Ecol Manag 110:127–139

    Article  Google Scholar 

  • Bergh J, Linder S, Freeman M, Sigurdsson B, Kellomäki S, Laitinen K, Niinistö S, Peltola H, Linder S (2003) Modelling the short-term effects of climate change on the productivity of selected tree species in Nordic countries. Ecol Manag 183:327–340

    Article  Google Scholar 

  • Bergh J, Freeman M, Räisänen J, Linder S (2009) Effects of global change on net primary production in northern Europe—a model based analysis on regional climate scenarios. iForest - Biogeosciences and Forestry (in press)

  • Blennow K, Sallnäs O (2004) WINDA—a system of models for assessing the probability of wind damage to forest stands within a landscape. Ecol Model 175(1):87–99

    Article  Google Scholar 

  • Blennow K, Olofsson E (2008) The probability of wind damage in forestry under a changed wind climate. Clim Change 87:347–360

    Article  Google Scholar 

  • Blennow K, Olofsson E, Sallnäs O (2003) Evaluating WINDA—a tool for assessing the probability of wind damage to forest stands. In: Ruck B, Kottmeier C, Mattheck C, Quine C, Wilhelm G (eds) Wind effects on trees. University of Karlsruhe, Germany, pp 137–144

    Google Scholar 

  • Carbonnier C (1971) Bokens produktion i södra Sverige. (In Swedish, with English abstract.), vol 91. Stud For Suec, 55 pp

  • Carbonnier C (1975) Produktion i kulturbestånd av ek i södra Sverige. (In Swedish, with English abstract.), vol 125. Stud For Suec, 42 pp

  • Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81:7–30

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Déqué M, Rowell DP, Lüti D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, de Castro M, van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81:53–70

    Article  Google Scholar 

  • Döscher R, Willén U, Jones C, Rutgersson A, Meier HEM, Hansson U, Graham LP (2002) The development of the coupled regional ocean-atmosphere model RCAO. Boreal Environ Res 7:183–192

    Google Scholar 

  • Ekö PM (1985) En produktionsmodell för skog i Sverige, baserad på bestånd från riksskogstaxeringens provytor. Swedish University of Agricultural Sciences, Department of Silviculture, Umeå, Report 16, 224 pp. (In Swedish, with English summary)

  • Eriksson H (1976) Granens produktion i Sverige. Royal College of Forestry, Department of Forest Yield Research, Research Notes 41, 202 pp (In Swedish, with English summary)

  • ESRI Inc (2001) ArcInfo 8.1. ESRI, Redlands

  • Fries J (1964) Vårtbjörkens produktion i Svealand och södra Norrland. (In Swedish.), vol 14. Stud For Suec, 303 pp

  • Gardiner BA, Stacey GR, Belcher RE, Wood CJ (1997) Field and wind tunnel assessments of the implications of respacing and thinning for tree stability. Forestry 70(3):233–252

    Article  Google Scholar 

  • Gardiner B, Peltola H, Kellomäki S (2000) Comparison of two models for predicting the critical wind speeds required to damage coniferous trees. Ecol Model 129:1–23

    Article  Google Scholar 

  • Gardiner BA, Marshall B, Achim A, Belcher R, Wood C (2005) The stability of different silvicultural systems: a wind tunnel investigation. Forestry 78:471–484

    Article  Google Scholar 

  • Gumbel EJ (1958) Statistics of extremes. Columbia University Press, New York, 375 pp

    Google Scholar 

  • Hägglund B (1981) Samband mellan ståndortsindex H100 och bonitet för tall och gran i Sverige. (In Swedish). Swedish University of Agricultural Sciences, Faculty of Forestry, Project Hugin, Report 26

  • Hannerz M (1999) Evaluation of temperature models for predicting bud burst in Norway spruce. Can J For Res 29:9–19

    Article  Google Scholar 

  • Holmberg L-E (2005) Sammanställning av stormskador på skog i Sverige under de senaste 210 åren. (In Swedish). Rapport No. 9. Swedish Forest Agency, p 14

  • Johnsen K, Samuelsson L, Teskey R, McNulty S, Fox T (2001) Process models as tools in forestry research and management. For Science 47(1):2–8

    Google Scholar 

  • Kellomäki S, Kolström M (1994) The influence of climate-change on the productivity of Scots pine, Norway spruce, Pendula birch and Pubescent birch in southern and northern Finland. Ecol Manag 65:201–217

    Article  Google Scholar 

  • Kirilenko AP, Sedjo RA (2007) Climate change impacts on forestry. PNAS 104:19697–19702

    Article  Google Scholar 

  • Kjellström E, Bärring L, Gollvik S, Hansson U, Jones C, Samuelsson P, Rummukainen M, Ullerstig A, Willén U, Wyser K (2005) A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3). SMHI Reports Meteorology and Climatology No. 108, SMHI, SE-60176 Norrköping, Sweden, 54 pp

  • Körner C (2003) Carbon limitations in trees. J Ecol 91:4–17

    Article  Google Scholar 

  • Körner C, Asshoff R, Bignucolo O, Hättenschwiller S, Keel SG, Peláez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Exposing a mature Swiss forest to elevated atmospheric CO2 increased the flux of carbon through the trees and soils but did not increase net forest growth or carbon storage. Science 309:1360–1362

    Article  Google Scholar 

  • Kristensen L, Rathmann O, Hansen SO (2000) Extreme winds in Denmark. J Wind Eng Ind Aerodyn 87:147–166

    Article  Google Scholar 

  • Landsberg J (2003) Modelling forest ecosystems: state of the art, challenges, and future directions. Can J For Res 33:385–397

    Article  Google Scholar 

  • Lasch P, Lindner M, Erhard M, Suckow F, Wenzel A (2002) Regional impact assessment on forest structure and functions under climate change—the Brandenburg case study. Ecol Manag 162:73–86

    Article  Google Scholar 

  • Lindner M (2000) Developing adaptive forest management strategies to cope with climate change. Tree Physiol 20:299–307

    Google Scholar 

  • Linder S, Lohammar T (1981) Amount and quality of information on CO2-exchange required for estimating annual carbon balance of coniferous trees. Stud For Suec 160:73–87

    Google Scholar 

  • Lou Y et al (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739

    Article  Google Scholar 

  • Mäkelä A, Landsberg J, Ek AR, Burk TE, Ter-Mikaelian M, Ågren GI, Oliver CD, Puttonen P (2000) Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiol 20:289–298

    Google Scholar 

  • Matala J, Ojansuu R, Peltola H, Sievänen R, Kellomäki S (2005) Introducing effects of temperature and CO2 elevation on tree growth into a statistical growth and yield model. Ecol Model 181:173–190

    Article  Google Scholar 

  • Matala J, Ojansuu R, Peltola H, Raitio H, Kellomäki S (2006) Modelling the response of tree growth to temperature and CO2 elevation as related to the fertility and current temperature sum of a site. Ecol Model 199:39–52

    Article  Google Scholar 

  • McMurtrie RE, Rook DA, Kelliher FM (1990) Modeling the yield of Pinus radiata on a site limited by water and nitrogen. Ecol Manag 30:381–413

    Article  Google Scholar 

  • Mortensen NG, Landberg L, Troen I, Petersen EL (1998) Wind Atlas Analysis and Application Program (WASP). Ris∅ National Laboratory, Roskilde

  • Nakicenovic N, Swart R (eds) (2000) Emission scenarios. Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, UK, 570 pp

  • Nicoll BC, Gardiner BA, Peace AJ (2008) Improvements in anchorage provided by the acclimation of forest trees to wind stress. Forestry 81:389–398

    Article  Google Scholar 

  • Nilsson C, Stjernquist I, Bärring L, Schlyter P, Jönsson AM, Samuelsson H (2004) Recorded storm damage in Swedish forests 1901-2000. Ecol Manag 199:165–173

    Article  Google Scholar 

  • Norby RJ et al (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102:18052–18056

    Article  Google Scholar 

  • Örlander G, Langvall O, Blennow K (2000) Climate. In: Carlsson M (ed) Sustainable forestry at the landscape level case study Asa. The SUFOR research programme, Department of Plant Ecology, Lund University, Sweden, pp 11–14

    Google Scholar 

  • Pelkonen P (1980) The uptake of carbon dioxide in Scots pine during spring. Flora 169:386–397

    Google Scholar 

  • Peltola H, Kellomäki S, Väisänen H (1999a) Model computations of the impact of climatic change on the windthrow risk of trees. Clim Change 41:17–36

    Article  Google Scholar 

  • Peltola H, Kellomäki S, Väisänen H, Ikonen VP (1999b) A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce, and birch. Can J For Res 29:647–661

    Article  Google Scholar 

  • Persson P (1975) Stormskador på skog—Uppkomstbetingelser och inverkan på skogliga åtgärder. Royal College of Forestry, Department of Forest Yield Research, Research Notes 36, 294 pp. (In Swedish, with English summary)

  • Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16:123–146

    Article  Google Scholar 

  • Quine C, Gardiner B (2002) Climate change impacts: storms. In: Broadmeadow M (ed) Climate change impacts on UK forests. Forestry-commission-bulletin 125:41–51

    Google Scholar 

  • Raab B, Vedin H (eds) (1995) Climate, lakes, and rivers. Natinal Atlas of Sweden, p 175

  • Räisänen J, Hansson A, Ullerstig R, Döscher L, Graham LP, Jones C, Meier HEM, Samuelsson P, Willén U (2004) European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios. Clim Dyn 22:13–31

    Article  Google Scholar 

  • Riikonen J, Lindsberg M-M, Holopainen T, Oksanen JL, Peltonen P, Vapaavuori E (2004) Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone. Tree Physiol 24:1227–1237

    Google Scholar 

  • Roeckner E, Bengtsson L, Feichter J, Lelieveld J, Rodhe H (1999) Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle. J Climate 12:3004–3032

    Article  Google Scholar 

  • Ruel J-C (1995) Understanding windthrow: silvicultural implications. For Chron 71(4):434–445

    Google Scholar 

  • Rummukainen M, Bergström S, Persson G, Rodhe J, Tjernström M (2004) The Swedish Regional Climate Modelling Programme, SWECLIM: a review. Ambio 33:176–182

    Google Scholar 

  • Savill PS (1983) Silviculture in windy climates. For Abs 44(8):473–488

    Google Scholar 

  • Schelhaas M-J, Nabuurs GJ, Sonntag M, Pussinen A (2002) Adding natural disturbances to a large-scale forest scenario model and a case study for Switzerland. Ecol Manag 167:13–26

    Article  Google Scholar 

  • Schelhaas M-J, Nabuurs GJ, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Change Biol 9:1620–1633

    Article  Google Scholar 

  • SFA (1985) Gallringsmallar, Södra Sverige. (In Swedish). Swedish Forest Agency, Jönköping, 35 pp

    Google Scholar 

  • SFA (2006) Stormen 2005—en skoglig analys. Meddelande No. 1. Swedish Forest Agency, Jönköping

  • Sonesson J, Bergh J, Björkman C, Blennow K, Eriksson H, Linder S, Rummukainen M, Stenlid J, Rosén K (2004) Climate change and forestry in Sweden—a literature review, vol 143. Kungl Skogs- och Lantbruksakademiens Tidskrift, 40 pp

  • Strand M (1995) Inhibition of photosynthesis in current-year needles of unfertilised and fertilised Norway spruce (Picea abies (L.) Karst.) during autumn and early winter. Trees 9:332–340

    Article  Google Scholar 

  • UNECE/FAO (2000) Effects of the December 1999 storms on European timber markets. Forest products and market review. Economic Commission for Europe, Food and Agriculture Organization of the United Nations, pp 23–37

  • Van Cleve K, Oechel WC, Hom JL (1990) Response of black spruce (Picea mariana) ecosystems to soil temperature modification in interior Alaska. Can J For Res 20:1530–1535

    Article  Google Scholar 

  • Venäläinen A, Tuomenvirta H, Heikinheimo M, Kellomäki S, Peltola H, Strandman H, Väisänen H (2001) Impact of climate change on soil frost under snow cover in a forested landscape. Clim Res 176:63–72

    Article  Google Scholar 

  • Venäläinen A, Zeng HC, Peltola H, Talkkari A, Strandman H, Wang KY, Kellomäki S (2004) Simulations of the influence of forest management on wind climate on a regional scale. Agr Forest Meteorol 123:149–158

    Article  Google Scholar 

  • Zeng HC, Peltola H, Talkarri H, Venäläinen A, Strandman H, Kellomäki S, Wang KY (2004) Influence of clear-cutting on the risk of wind damage at forest edges. Ecol Manag 203:77–88

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Blennow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blennow, K., Andersson, M., Bergh, J. et al. Potential climate change impacts on the probability of wind damage in a south Swedish forest. Climatic Change 99, 261–278 (2010). https://doi.org/10.1007/s10584-009-9698-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-009-9698-8

Keywords

Navigation