Skip to main content

Advertisement

Log in

Life-style services and yield from south-Swedish forests adaptively managed against the risk of wind damage: a simulation study

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

We estimated the effect of adapting forest management to reduce the risk of wind damage under climate change on life-style services and forest yield in a south-Swedish forest using an integrated modelling approach. The ECHAM5/CCLM models had been used to produce a reference climate and a climate change scenario for the A1B emission scenario. Using the FinnFor model we estimated the effect of the climate change scenario on the site index for three common commercial tree species for the period 2001–2100. The adjusted site index was applied in projections of the forest using the Forest Time Machine model. The WINDA-GALES model was used to calculate the probability of wind damage in simulated future states of the forest. Effects of increasing forest owner motivation to take measures to adapt to climate change were simulated by comparing the effects of introducing adaptive measures in years 2001 and 2051, respectively. These adaptive measures had been identified in consultation with stakeholders. In the simulations, adaptive regimes resulted in generally increased yield, increased hunting potential and a higher number of forest management operations to be carried out, although other aspects of recreation services were reduced. The net return remained unaffected by most of the adaptive forest management regimes. The simulations were made without accounting for effects of predicted wind damage on the states of the forest. Forest owners perceiving increased risk of wind damage but also risk to their life-style would have to balance adaptive measures between these risks. We conclude that adapting forest management to reduce the risk of wind damage may impact on life-style services. Hence, this may affect the process of adaptation to an increasing risk of wind damage in southern Sweden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahti T, Hämet-Ahti L, Jalas J (1968) Vegetation zones and their sections in northwestern Europe. Ann Bot Fenn 5:169–211

    Google Scholar 

  • Akin DE (1989) Histological and physical factors affecting digestibility of forages. Agron J 81:17–25. doi:10.2134/agronj1989.00021962008100010004x

    Article  Google Scholar 

  • Andersson M, Blennow K (2011) Case study Kronoberg (1b). In: Trasobares A, Bugmann H (eds.) MOTIVE D4.3. Descriptions and algorithms characterizing current and possible future silvicultural treatments in the MOTIVE Case Study areas.FP7-226544-MOTIVE/D4.3. http://www.motive-project.net. Accessed 5 Nov 2013

  • Andersson M, Dahlin B, Mossberg M (2005) The forest time machine—a multi-purpose forest management decision-support system. Comput Electron Agric 49:114–128. doi:10.1016/j.compag.2005.02.006

    Article  Google Scholar 

  • Bergh J, Nilsson U, Kjartansson B, Karlsson M (2010) Impact of climate change on the productivity of silver Birch, Norway spruce and Scots pine stands in Sweden with economic implications for timber production. Ecol Bull 53:185–195

    Google Scholar 

  • Blennow K (2012) Adaptation of forest management to climate change among private individual forest owners in Sweden. For Policy Econ 24:41–47. doi:10.1016/j.forpol.2011.04.005

    Article  Google Scholar 

  • Blennow K, Gardiner B (2009) The WINDA-GALES wind damage risk planning tool (Extended abstract). In: Proceedings of 2nd International Conference Wind Effects on Trees, Albert-Ludwigs-University, Germany, 13–16 October 2009. Berichte des Meteorologischen Instituts der Albert-Ludwigs-Universität Freiburg, pp 109–112

  • Blennow K, Olofsson E (2008) The probability of wind damage in forestry under a changed wind climate. Clim Change 87:347–360. doi:10.1007/s10584-007-9290-z

    Article  Google Scholar 

  • Blennow K, Persson J (2009) Climate change: motivation for taking measure to adapt. Glob Environ Change 19:100–104. doi:10.1016/j.gloenvcha.2008.10.003

    Article  Google Scholar 

  • Blennow K, Sallnäs O (2002) Risk perception among non-industrial private forest owners. Scand J For Res 17:472–479. doi:10.1080/028275802320435487

    Article  Google Scholar 

  • Blennow K, Sallnäs O (2004) WINDA—a system of models for assessing the probability of wind damage to forest stands within a landscape. Ecol Model 175:87–99. doi:10.1016/j.ecolmodel.2003.10.009

    Article  Google Scholar 

  • Blennow K, Andersson M, Bergh J, Sallnäs O, Olofsson E (2010a) Potential climate change impacts on the probability of wind damage in a south Swedish forest. Clim Change 99:261–278. doi:10.1007/s10584-009-9698-8

    Article  Google Scholar 

  • Blennow K, Andersson M, Sallnäs O, Olofsson E (2010b) Climate change and the probability of wind damage in two Swedish forests. For Ecol Manag 259:818–830. doi:10.1016/j.foreco.2009.07.004

    Article  Google Scholar 

  • Blennow K, Persson J, Tomé M, Hanewinkel M (2012) Climate change: believing and seeing implies adapting. PLoS One 7(11):e50182. doi:10.1371/journal.pone.0050182

    Article  CAS  Google Scholar 

  • Blennow K, Persson J, Wallin A, Vareman N, Persson E (2014) Understanding risk in forest ecosystem services: implications for effective risk management, communication and planning. Forestry 87:219–228. doi:10.1093/forestry/cpt032

    Article  Google Scholar 

  • Boman M, Mattsson L (2012) The hunting value of game in Sweden: have changes occurred over recent decades? Scand J For Res 27:669–674. doi:10.1080/02827581.2012.683533

    Article  Google Scholar 

  • Ekö P-M (1985) En produktionsmodellförskogiSverige, baseradpåbeståndfrånriksskogstaxeringensprovytor [A growth simulator for Swedish forests, based on data from the national forest survey]. Dissertation, Swedish University of Agricultural Sciences, Department of Silviculture (In Swedish, with English summary)

  • Gardiner BA, Stacey GR, Belcher RE, Wood CJ (1997) Field and wind tunnel assessments of the implications of respacing and thinning for tree stability. Forestry 70:233–252. doi:10.1093/forestry/70.3.233

    Article  Google Scholar 

  • Gardiner BA, Peltola H, Kellomäki S (2000) The development and testing of two models to predict the critical wind speeds required to damage coniferous trees. Ecol Model 129:1–23. doi:10.1016/S0304-3800(00)00220-9

    Article  Google Scholar 

  • Gardiner BA, Marshall B, Achim A, Belcher R, Wood C (2005) The stability of different silvicultural systems: a wind tunnel investigation. Forestry 78:471–484. doi:10.1093/forestry/cpi053

    Article  Google Scholar 

  • Gardiner B, Byrne K, Hale S, Kamimura K, Mitchell SJ, Peltola H, Ruel J-C (2008) A review of mechanistic modelling of wind damage risk to forests. Forestry 81:447–463. doi:10.1093/forestry/cpn022

    Article  Google Scholar 

  • Gardiner B, Blennow K, Carnus J-M, Fleischer M, Ingemarson F et al (2010) Destructive storms in European forests: past and forthcoming impacts. Final report to DG Environment (07.0307/2009/SI2.540092/ETU/B.1). http://ec.europa.eu/environment/forests/fprotection.htm. Accessed 18 October 2013

  • Ge Z, Zou X, Kellomäki S, Wang K-Y, Peltola H, Väisänen H, Strandman H (2010) Effects of changing climate on water and nitrogen availability with implications on the productivity of Norway spruce in southern Finland. Ecol Model 221:1731–1743. doi:10.1016/j.ecolmodel.2010.03.017

    Article  Google Scholar 

  • Gumbel EJ (1958) Statistics of extremes. Columbia University Press, New York

    Google Scholar 

  • Hägglund B, Lundmark J-E (1987) Handledning i bonitering med Skogshögskolans boniteringssystem. D. 2, Diagram ochtabeller (In Swedish). Swedish Forest Agency, Jönköping (In Swedish)

  • Hewitt CD, Griggs DJ (2004) Ensembles-Based Predictions of Climate Changes and Their Impacts, ENSEMBLES Technical Report No. 1. http://www.ensembles-eu.org/. Accessed 18 October 2013

  • Hope ACA (1968) A simplified Monte Carlo significance test procedure. J R Stat Soc Ser B 30:582–598

    Google Scholar 

  • Hultman S-G (1983) Allmänhetens bedömning av skogsmiljöers lämplighet för friluftsliv. Dissertation, Swedish university of agricultural sciences

  • Johnell A, Eklund D, Gustavsson H, Hallberg K, Stensen B (2010) Regional klimat- och sårbarhetsanalys Kronobergs län—risker för översvämningar och höga flöden(In Swedish). Swedish Meteorological and Hydrological Institute. http://www.lansstyrelsen.se/kronoberg/. Accessed 21 October 2013

  • Karlsson C, Westman S-E (1987) Skogsuppskattning, skogsinventering. Liber, Stockholm, Sweden. (In Swedish)

  • Kellomäki S, Väisänen H (1997) Modelling the dynamics of the boreal forest ecosystems for climate change studies in the boreal conditions. Ecol Model 97:121–140. doi:10.1016/S0304-3800(96)00081-6

    Article  Google Scholar 

  • Kristensen L, Rathmann O, Hansen SO (2000) Extreme winds in Denmark. J Wind Eng Ind Aerodyn 87:147–166. doi:10.1016/S0167-6105(00)00034-9

    Article  Google Scholar 

  • Kurttila M, Pukkala T, Loikkanen J (2002) The performance of alternative spatial objective types in forest planning calculations: a case for flying squirrel and moose. For Ecol and Manag 166:245–260. doi:10.1016/S0378-1127(01)00664-8

    Article  Google Scholar 

  • Lantmäteriet (1988) Beståndsmetoden för skogsvärdering. Tillväxt och avverkning. Lantmäteriet, Gävle, Sweden. (In Swedish)

  • Lindhagen A (2005). Modellering av rekreationsvärden. In: Ingemarson F (ed) Har skogen mer att ge?—analysverktyg för framtidens miljö, produktion och sociala värden. Report No 20, Faculty of Forestry, Swedish University of Agricultural Sciences, Umeå, pp 112–118 (In Swedish)

  • Lindhagen A, Hörnsten L (2000) Forest recreation in 1977 and 1997 in Sweden: changes in public preferences and behavior. Forestry 73:143–153. doi:10.1093/forestry/73.2.143

    Article  Google Scholar 

  • Matala J, Hynynen J, Miina R, Ojansuu H, Peltola R, Sievänen H, Väisänen H, Kellomäki S (2003) Comparison of a physiological model and a statistical model for prediction of growth and yield in boreal forests. Ecol Model 161:95–116. doi:10.1093/treephys/tpr001

    Article  Google Scholar 

  • Mattsson L, Boman M, Kindstrand C (2004) Privatägd skog: Värden, visioner och forskningsbehov. SUFOR: Brattåsstiftelsen, Alnarp, Sweden. (In Swedish)

  • Mattsson L, Boman M, Ericsson G (2008). Jakten i Sverige - Ekonomiska värden och attityder jaktåret 2005/06 [Hunting in Sweden -Economic values and attitudes in the hunting year 2005/06] (In Swedish). Umeå: Adaptive Management of Fish and Wildlife Report No. 1

  • Mortensen NG, Landberg L, Troen I, Petersen EL (1998) Wind Atlas Analysis and Application Program (WASP). Risø National Laboratory, Roskilde

    Google Scholar 

  • Nakicenovic N, Swart R (Eds.) (2000) Emissions scenarios. Cambridge University Press, UK, p 570 http://www.ipcc.ch/ipccreports/sres/emission/index.php?idp=0

  • Näslund M (1936) Skogsförsöksanstantens gallringsförsök i tallskog. Meddelanden från Statens Skogsförsöksanstalt. Häfte 29:1–179

    Google Scholar 

  • NikulinG Kjellström E, Hansson U, Strandberg G, Ullerstig A (2011) Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus 63A:41–55

    Article  Google Scholar 

  • Persson P (1975) Stormskador på skog—Uppkomstbetingelser och inverkan på skogliga åtgärder [Windthrow in forests: it’scauses and the effect of forestry measures]. (In Swedish, with English summary). Dissertation, Royal College of Forestry, Department of Forest Yield Research. (In Swedish, with English summary)

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. Accessed 25 October 2013

  • Reese H, Nilsson M, Pahlén TG, Hagner O, Joyce S, Tingelöf U, Egberth M, Olsson H (2003) Countrywide Estimates of Forest Variables Using Satellite Data and Field Data from the National Forest Inventory. Ambio 32:542–548. doi:10.1579/0044-7447-32.8.542

    Article  Google Scholar 

  • Ruel J-C (1995) Understanding windthrow: silvicultural implications. For Chron 71(4):434–445

    Article  Google Scholar 

  • Saether B-E, Andersen R, Hjeljord O, Heim M (1996) Ecological correlates of regional variation in life history of the moose Alcesalces. Ecology 77:1493–1500. doi:10.2307/2265546

    Article  Google Scholar 

  • Savill PS (1983) Silviculture in windy climates. For Abs Rev Article 44:473–488

    Google Scholar 

  • SCCV (2007) Sweden facing climate change—threats and opportunities. Swedish Commission on Climate and Vulnerability, the Ministry of the Environment, Stockholm, Sweden. SOU 2007:60 www.sweden.gov.se/sb/d/574/a/96002. Accessed 25 October 2013

  • Schelhaas M-J, Nabuurs GJ, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Change Biol 9:1620–1633. doi:10.1046/j.1365-2486.2003.00684.x

    Article  Google Scholar 

  • SFA (2012) Skogsvårdslagen: handbok. Swedish Forest Agency, Jönköping, Sweden. (In Swedish)

  • SFA (2013) Skogsstatistiskårsbok 2013 [Statistical yearbook of forestry 2013]. Swedish Forest Agency, Jönköping, Sweden (In Swedish with English summary)

  • SGU (1990) Jordartskartan 5E Växjö SO Skala 1:50 000 [SoilMap 5E Växjö SO]. Geological Survey of Sweden, Uppsala

    Google Scholar 

  • SLU (2009) kNN Sweden 2000. http://skogskarta.slu.se. Accessed 9 September 2009

  • Törnqvist T (1995) Skogsrikets arvingar: en sociologisk studie av skogsägarskapet inom privat, enskilt skogsbruk (In Swedish withsummary in English). Swedish University of Agricultural Sciences, Diss

    Google Scholar 

  • van der Linden P, Mitchell JFB (eds.) (2009) ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project, 160 pp. http://ensembles-eu.metoffice.com/docs/Ensembles_final_report_Nov09.pdf. Accessed 16 July 2014

  • Zeng HC, Peltola H, Talkarri H, Venäläinen A, Strandman H, Kellomäki S, Wang KY (2004) Influence of clear-cutting on the risk of wind damage at forest edges. Ecol Manag 203:77–88. doi:10.1016/j.foreco.2004.07.057

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the EU project MOTIVE (“Models for adaptive forest management”, grant 226544) to M.A., S.K., B.G. and K.B. and the foundation for strategic environmental research programme Mistra-SWECIA to K.B. The ENSEMBLES data used in this work was funded by the EU FP6 Integrated Project ENSEMBLES (Contract number 505539) whose support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Blennow.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 238 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersson, M., Kellomäki, S., Gardiner, B. et al. Life-style services and yield from south-Swedish forests adaptively managed against the risk of wind damage: a simulation study. Reg Environ Change 15, 1489–1500 (2015). https://doi.org/10.1007/s10113-014-0687-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-014-0687-8

Keywords

Navigation