Climatic Change

, Volume 92, Issue 3–4, pp 243–259 | Cite as

Geoengineering climate by stratospheric sulfur injections: Earth system vulnerability to technological failure

  • Victor Brovkin
  • Vladimir Petoukhov
  • Martin Claussen
  • Eva Bauer
  • David Archer
  • Carlo Jaeger
Open Access
Article

Abstract

We use a coupled climate–carbon cycle model of intermediate complexity to investigate scenarios of stratospheric sulfur injections as a measure to compensate for CO2-induced global warming. The baseline scenario includes the burning of 5,000 GtC of fossil fuels. A full compensation of CO2-induced warming requires a load of about 13 MtS in the stratosphere at the peak of atmospheric CO2 concentration. Keeping global warming below 2°C reduces this load to 9 MtS. Compensation of CO2 forcing by stratospheric aerosols leads to a global reduction in precipitation, warmer winters in the high northern latitudes and cooler summers over northern hemisphere landmasses. The average surface ocean pH decreases by 0.7, reducing the calcifying ability of marine organisms. Because of the millennial persistence of the fossil fuel CO2 in the atmosphere, high levels of stratospheric aerosol loading would have to continue for thousands of years until CO2 was removed from the atmosphere. A termination of stratospheric aerosol loading results in abrupt global warming of up to 5°C within several decades, a vulnerability of the Earth system to technological failure.

References

  1. Archer DE (1991) Modeling the calcite lysocline. J Geophys Res 96:17, 037–017, 050CrossRefGoogle Scholar
  2. Archer D (2007) Global warming: understanding the forecast. Blackwell, p 208Google Scholar
  3. Archer D, Brovkin V (2008) Millennial atmospheric lifetime of anthropogenic CO2. Clim Change. doi:10.1007/s10584-008-9413-1
  4. Archer D, Kheshgi H, MaierReimer E (1997) Multiple timescales for neutralization of fossil fuel CO2. Geophys Res Lett 24:405–408CrossRefGoogle Scholar
  5. Bala G, Caldeira K, Mirin A, Wickett M, Delire C (2005) Multicentury changes to the global climate and carbon cycle: results from a coupled climate and carbon cycle model. J Climate 18:4531–4544CrossRefGoogle Scholar
  6. Bengtsson L (2006) Geo-engineering to confine climate change: is it at all feasible? Clim Change 77:229–234CrossRefGoogle Scholar
  7. Broecker WS, Peng TH (1987) The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Glob Biogeochem Cycles 1:15–29CrossRefGoogle Scholar
  8. Brovkin V, Bendtsen J, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V, Andreev A (2002) Carbon cycle, vegetation, and climate dynamics in the holocene: experiments with the CLIMBER-2 model. Glob Biogeochem Cycles 16. doi:10.1029/2001GB001662
  9. Budyko MI (1977) Climate changes. American Geophysical Union, Washington, D.C., p 244Google Scholar
  10. Cao L, Caldeira K, Jain AK (2007) Effects of carbon dioxide and climate change on ocean acidification and carbonate mineral saturation. Geophys Res Lett 34:L05607. doi:10.1029/2006GL028605 CrossRefGoogle Scholar
  11. Charlson RJ, Langner J, Rodhe H, Leovy CB, Warren SG (1991) Perturbation of the Northern-hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus Ser A Dyn Meteorol Oceanogr 43:152–163CrossRefGoogle Scholar
  12. Chylek P, Wong J (1995) Effect of absorbing aerosols on global radiation budget. Geophys Res Lett 22:929–931CrossRefGoogle Scholar
  13. Claussen M, Mysak LA, Weaver AJ, Crucifix M, Fichefet T, Loutre MF, Weber SL, Alcamo J, Alexeev VA, Berger A, Calov R, Ganopolski A, Goosse H, Lohmann G, Lunkeit F, Mokhov II, Petoukhov V, Stone P, Wang Z (2002) Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim Dyn 18:579–586CrossRefGoogle Scholar
  14. Cramer W (2006) Air pollution and climate change both reduce Indian rice harvests. Proc Natl Acad Sci USA 103:19609–19610CrossRefGoogle Scholar
  15. Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Chang Biol 7:357–373CrossRefGoogle Scholar
  16. Crutzen PJ (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim Change 77:211–219CrossRefGoogle Scholar
  17. Early JT (1989) Space-based solar screen to offset the greenhouse effect. J Brit Interplanetary Soc 42:567–569Google Scholar
  18. Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate–carbon cycle feedback analysis: results from the C4MIP-model intercomparison. J Climate 19:3337–3353CrossRefGoogle Scholar
  19. Ganopolski A, Petoukhov V, Rahmstorf S, Brovkin V, Claussen M, Eliseev A, Kubatzki C (2001) CLIMBER-2: a climate system model of intermediate complexity. Part II: model sensitivity. Clim Dyn 17:735–751CrossRefGoogle Scholar
  20. Govindasamy B, Caldeira K (2000) Geoengineering earth’s radiation balance to mitigate CO2-induced climate change. Geophys Res Lett 27:2141–2144CrossRefGoogle Scholar
  21. Govindasamy B, Thompson S, Duffy PB, Caldeira K, Delire C (2002) Impact of geoengineering schemes on the terrestrial biosphere. Geophys Res Lett 29:18.1–18.4CrossRefGoogle Scholar
  22. Hansen J, Lacis A, Ruedy R, Sato M (1992) Potential climate impact of Mount Pinatubo eruption. Geophys Res Lett 19:215–218CrossRefGoogle Scholar
  23. Hoffert MI, Caldeira K, Benford G, Criswell DR, Green C, Herzog H, Jain AK, Kheshgi HS, Lackner KS, Lewis JS, Lightfoot HD, Manheimer W, Mankins JC, Mauel ME, Perkins LJ, Schlesinger ME, Volk T, Wigley TML (2002) Advanced technology paths to global climate stability: energy for a greenhouse planet. Science 298:981–987CrossRefGoogle Scholar
  24. IPCC (2001) In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson C (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 881Google Scholar
  25. Jaeger C, Schellnhuber H-J, Brovkin V (2008) Stern’s review and Adam’s fallacy. Clim Change 89:207–218CrossRefGoogle Scholar
  26. Keith DW (2008) Engineering the planet. In: Schneider S, Mastrandrea M (eds) Climate change science and policy. Island (in press)Google Scholar
  27. Kellogg WW, Schneider SH (1974) Climate stabilization—for better or for worse. Science 186:1163–1172CrossRefGoogle Scholar
  28. Kvenvolden KA (2002) Methane hydrate in the global organic carbon cycle. Terra Nova 14:302–306CrossRefGoogle Scholar
  29. Lackner KS (2003) A guide to CO2 sequestration. Science 300:1677–1678CrossRefGoogle Scholar
  30. Lawrence MG (2006) The geoengineering dilemma: to speak or not to speak. Clim Change 77:245–248CrossRefGoogle Scholar
  31. Lenton TM, Williamson MS, Edwards NR, Marsh R, Price AR, Ridgwell AJ, Shepherd JG, Cox SJ (2006) Millennial timescale carbon cycle and climate change in an efficient earth system model. Clim Dyn 26:687–711CrossRefGoogle Scholar
  32. Marchetti C (1977) Geo-engineering and CO2 problem. Clim Change 1:59–68CrossRefGoogle Scholar
  33. Matthews HD, Caldeira K (2007) Transient climate–carbon simulations of planetary geoengineering. Proc Natl Acad Sci USA 104:9949–9954CrossRefGoogle Scholar
  34. Minnis P, Harrison EF, Stowe LL, Gibson GG, Denn FM, Doelling DR, Smith WL (1993) Radiative climate forcing by the Mount Pinatubo eruption. Science 259:1411–1415CrossRefGoogle Scholar
  35. Mudur G (1995) Climate-change-monsoon shrinks with aerosol models. Science 270:1922–1922CrossRefGoogle Scholar
  36. NAS (1992) Panel on policy implications of greenhouse warming. Policy implications of greenhouse warming: mitigation, adaptation, and the science base. National Academy Press, Washington, DCGoogle Scholar
  37. Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–972CrossRefGoogle Scholar
  38. Petoukhov V, Ganopolski A, Brovkin V, Claussen M, Eliseev A, Kubatzki C, Rahmstorf S (2000) CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate. Clim Dyn 16:1–17CrossRefGoogle Scholar
  39. Petoukhov V, Claussen M, Berger A, Crucifix M, Eby M, Eliseev AV, Fichefet T, Ganopolski A, Goosse H, Kamenkovich I, Mokhov II, Montoya M, Mysak LA, Sokolov A, Stone P, Wang Z, Weaver AJ (2005) EMIC intercomparison project (EMIP-CO2): comparative analysis of EMIC simulations of climate, and of equilibrium and transient responses to atmospheric CO2 doubling. Clim Dyn 25:363–385CrossRefGoogle Scholar
  40. Plattner G-K, Knutti R, Joos F, Stocker TF, von Bloh W, Brovkin V, Cameron D, Driesschaert E, Dutkiewicz S, Eby M, NR E, Fichefet T, Hargreaves JC, Jones CD, Loutre M-F, Matthews HD, Mouchet A, Mueller SA, Nawrath S, Price A, Sokolov A, Strassmann KM, Weaver AJ (2008) Long-term climate commitments projected with climate–carbon cycle models. J Climate 2721–2751Google Scholar
  41. Ridgwell A, Hargreaves JC (2007) Regulation of atmospheric CO2 by deep-sea sediments in an Earth system model. Glob Biogeochem Cycles 21. doi:10.1029/2006GB002764
  42. Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367CrossRefGoogle Scholar
  43. Scheffer M, Brovkin V, Cox PM (2006) Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change. Geophys Res Lett 33:L10702.1–L10702.4CrossRefGoogle Scholar
  44. Schneider SH (1996) Geoengineering: could- or should-we do it? Clim Change 33:291–302CrossRefGoogle Scholar
  45. Schneider SH (2001) Earth systems engineering and management. Nature 409:417–421CrossRefGoogle Scholar
  46. Sitch S, Brovkin V, von Bloh W, van Vuuren D, Eickhout B, Ganopolski A (2005) Impacts of future land cover changes on atmospheric CO2 and climate. Glob Biogeochem Cycles 19. doi:10.1029/2004GB002311
  47. Teller E, Wood L, Hyde R (1997) Global warming and ice ages: I. Prospects for physics based modulation of global change. Lawrence Livermore National Laboratory, Livermore, CAGoogle Scholar
  48. Trenberth KE, Dai A (2007) Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys Res Lett 34:L15702. doi:10.1029/2007GL030524 CrossRefGoogle Scholar
  49. USGS (2007) Mineral commodity summaries 2007. U.S. Geological Survey, p 195Google Scholar
  50. Weitzman ML (2007) The stern review of the economics of climate change. J Econ Lit 45:703–724CrossRefGoogle Scholar
  51. Wigley TML (2006) A combined mitigation/geoengineering approach to climate stabilization. Science 314:452–454CrossRefGoogle Scholar
  52. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar
  53. Zickfeld K, Knopf B, Petoukhov V, Schellnhuber HJ (2005) Is the Indian summer monsoon stable against global change? Geophys Res Lett 32:L15707. doi:10.1029/2005GL022771 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • Victor Brovkin
    • 1
    • 2
  • Vladimir Petoukhov
    • 2
  • Martin Claussen
    • 1
    • 3
  • Eva Bauer
    • 2
  • David Archer
    • 4
  • Carlo Jaeger
    • 2
  1. 1.Max-Planck-Institute for MeteorologyHamburgGermany
  2. 2.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  3. 3.Meteorological InstituteUniversity HamburgHamburgGermany
  4. 4.Department of Geophysical SciencesUniversity of ChicagoChicagoUSA

Personalised recommendations