Skip to main content

Advertisement

Log in

Millennial timescale carbon cycle and climate change in an efficient Earth system model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A new Earth system model, GENIE-1, is presented which comprises a 3-D frictional geostrophic ocean, phosphate-restoring marine biogeochemistry, dynamic and thermodynamic sea-ice, land surface physics and carbon cycling, and a seasonal 2-D energy-moisture balance atmosphere. Three sets of model climate parameters are used to explore the robustness of the results and for traceability to earlier work. The model versions have climate sensitivity of 2.8–3.3°C and predict atmospheric CO2 close to present observations. Six idealized total fossil fuel CO2 emissions scenarios are used to explore a range of 1,100–15,000 GtC total emissions and the effect of rate of emissions. Atmospheric CO2 approaches equilibrium in year 3000 at 420–5,660 ppmv, giving 1.5–12.5°C global warming. The ocean is a robust carbon sink of up to 6.5 GtC year−1. Under ‘business as usual’, the land becomes a carbon source around year 2100 which peaks at up to 2.5 GtC year−1. Soil carbon is lost globally, boreal vegetation generally increases, whilst under extreme forcing, dieback of some tropical and sub-tropical vegetation occurs. Average ocean surface pH drops by up to 1.15 units. A Greenland ice sheet melt threshold of 2.6°C local warming is only briefly exceeded if total emissions are limited to 1,100 GtC, whilst 15,000 GtC emissions cause complete Greenland melt by year 3000, contributing 7 m to sea level rise. Total sea-level rise, including thermal expansion, is 0.4–10 m in year 3000 and ongoing. The Atlantic meridional overturning circulation shuts down in two out of three model versions, but only under extreme emissions including exotic fossil fuel resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adams B, White A, Lenton TM (2004) An analysis of some diverse approaches to modelling net primary productivity. Ecol Modell 177:353–391

    Article  Google Scholar 

  • Annan JD, Hargreaves JC, Edwards NR, Marsh R (2005) Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter. Ocean Modell 8:135–154

    Article  Google Scholar 

  • Archer D, Kheshgi H, Maier-Reimer E (1998) Dynamics of fossil fuel CO2 neutralization by marine CaCO3. Global Biogeochem Cycles 12:259–276

    Article  Google Scholar 

  • Batjes NH (1995) A homogenized soil data file for global environmental research: a subset of FAO, ISRIC and NRCS profiles (version 1.0). Working Paper and Preprint 95/10b, International Soil Reference and Information Centre, Wageningen, The Netherlands

  • Beltran C, Edwards NR, Haurie A, Vial J-P, Zachary DS (2005) Oracle-based optimisation applied to climate model calibration. Environ Modell Assess, DOI: 10.1007/s10666-005-9024-4

  • Berthelot M, Friedlingstein P, Ciais P, Monfray P, Dufrense JL, Treut HL, Fairhead L (2002) Global response of the terrestrial biosphere to CO2 and climate change using a coupled climate–carbon cycle model. Global Biogeochem Cycles 16:1084

    Article  Google Scholar 

  • Briegleb BP, Minnis P, Ramanathan V, Harrison E (1986) Comparison of regional clear-sky albedos inferred from satellite observations and model comparisons. J Climatol Appl Meterol 25:214–226

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Article  Google Scholar 

  • Cameron DR, Lenton TM, Ridgwell AJ, Shepherd JG, Marsh R (2005) A factorial analysis of the marine carbon cycle and ocean circulation controls on atmospheric CO2. Global Biogeochem Cycles 19:GB4027

    Google Scholar 

  • Claussen M, Mysak L, Weaver A, Crucifix M, Fichefet T, Loutre M, Weber S, Alcamo J, Alexeev V, Berger A, Calov R, Ganopolski A, Goosse H, Lohmann G, Lunkeit F, Mokhov I, Petoukhov V, Stone P, Wang Z (2002) Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim Dyn 18:579–586

    Article  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408(6813):184–187

    Article  Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol 7:357–373

    Article  Google Scholar 

  • Edwards NR, Marsh R (2005) Uncertainities due to transport-parameter sensitivity in an efficient 3-D ocean-climate model. Clim Dyn 24:415–433

    Article  Google Scholar 

  • Essery R, Best M, Cox P (2001) MOSES 2.2 technical documentation. Tech Rep 30, Hadley Centre

  • Fanning AG, Weaver AJ (1996) An atmospheric energy-moisture model: climatology, interpentadal climate change and coupling to an ocean general circulation model. J Geophys Res 101:15111–15128

    Article  Google Scholar 

  • Fichefet T, Poncin C, Goosse H, Huybrechts P, Janssens I, Le Treut H (2003) Implications of changes in freshwater flux from the Greenland ice sheet for the climate of the 21st century. Geophys Res Lett 30:1911

    Article  Google Scholar 

  • Friedlingstein P, Bopp L, Ciais P, Dufresne J-L, Fairhead L, LeTreut H, Monfray P, Orr J (2001) Positive feedback between future climate change and the carbon cycle. Geophys Res Lett 28(8):1543–1546

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, Bloh Wv, Brovkin V, Doney S, Eby M, Fung I, Govindasamy B, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler K-G, Schnur R, Strassmann K, Thompson S, Weaver A, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis, results from the C4MIP model intercomparison. J Clim (in press)

  • Fung IY, Doney SC, Lindsay K, John J (2005) Evolution of carbon sinks in a changing climate. Proc Nat Acad Sci 32(102):11201–11206

    Article  Google Scholar 

  • Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–457

    Article  Google Scholar 

  • Gregory JM, Huybrechts P, Raper SCB (2004) Threatened loss of the Greenland ice-sheet. Nature 428:616

    Article  Google Scholar 

  • Hansen JE (2005) A slippery slope: how much global warming constitutes “dangerous anthropogenic interference”? Clim Change 68:269–279

    Article  Google Scholar 

  • Hargreaves JC, Annan JD, Edwards NR, Marsh R (2004) An efficient climate forecasting method using an intermediate complexity Earth System Model and the ensemble Kalman filter. Clim Dyn 23:745–760

    Article  Google Scholar 

  • Hasselmann K, Hasselmann S, Giering R, Ocana V, Storch H (1997) Sensitivity study of optimal CO2 emissions path using a simplified structural integrated assessment model (SIAM). Clim Change 37:345–386

    Article  Google Scholar 

  • Hasselmann K, Latif M, Hooss G, Azar C, Edenhofer O, Jaeger CC, Johannessen OM, Kemfert C, Welp M, Wokaun A (2003) The challenge of long-term climate change. Science 302:1923–1925

    Article  Google Scholar 

  • Hibler WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846

    Article  Google Scholar 

  • Houghton RA, Hackler JL (2002) Carbon flux to the atmosphere from land-use changes. Trends: a compendium of data on global change. Tech. rep., Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA

  • Houghton JT, Jenkins GJ, Ephraums JJ (1990) Climate change. The IPCC scientific assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Houghton JT, Filho LGM, Callander BA, Harris N, Kattenberg A, Maskell K (1995) Climate change 1995. The science of climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • House JI, Prentice IC, Ramankutty N, Houghton R, Heimann M (2003) Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks. Tellus B 53B:345–363

    Article  Google Scholar 

  • Huybrechts P, Wolde JD (1999) The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J Clim 12:2169–2188

    Article  Google Scholar 

  • Johannessen OM, Khvorostovsky K, Miles MW, Bobylev LP (2005) Recent ice-sheet growth in the interior of Greenland. Science 310:1013–1016

    Article  Google Scholar 

  • Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455–492

    Article  Google Scholar 

  • Jones CD, Cox PM, Essery RLH, Roberts DL, Woodgate MJ (2003) Strong carbon cycle feedbacks in a climate model with interactive CO2 and sulphate aerosols. Geophys Res Lett 30:1479

    Article  Google Scholar 

  • Joos F, Plattner G-K, Stocker T, Marchal O, Schmittner A (1999) Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284:464–467

    Article  Google Scholar 

  • Joos F, Prentice IC, Sitch S, Meyer R, Hooss G, Plattner G-K, Gerber S, Hasselmann K (2001) Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochem Cycles 15:891–907

    Article  Google Scholar 

  • Keane AJ (2003) Wing optimization using design of experiment, response surface and data fusion methods. J Aircr 40(4):741–750

    Article  Google Scholar 

  • Keeling C, Whorf TP (2005) Atmospheric CO2 records from sites in the SIO air sampling network. Tech. rep., Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA

  • Killworth PD (1996) Time interpolation of forcing fields in ocean models. J Phys Oceanogr 26:126–143

    Article  Google Scholar 

  • Kirschbaum MU (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic storage. Soil Biol Biochem 27(6):753–760

    Article  Google Scholar 

  • Knutti R, Stocker TF (2002) Limited predictability of the future thermohaline circulation close to an instability threshold. J Clim 15:179–186

    Article  Google Scholar 

  • Lenton TM (2000) Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model. Tellus 52B:1159–1188

    Google Scholar 

  • Lenton TM (2006) Climate change to the end of the millennium. Clim Change (in press)

  • Lenton TM, Cannell MGR (2002) Mitigating the rate and extent of global warming. Clim Change 52:255–262

    Article  Google Scholar 

  • Lenton TM, Huntingford C (2003) Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model. Glob Change Biol 9:1333–1352

    Article  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature-dependence of soil respiration. Funct Ecol 8(3):315–323

    Article  Google Scholar 

  • Manabe S, Stouffer RJ (1994) Multiple-century response of a coupled ocean–atmosphere model to an increase of atmospheric carbon dioxide. J Clim 7:5–23

    Article  Google Scholar 

  • Marland G, Boden TA, Andres RJ (2003) Global, regional, and national fossil fuel CO2 emissions. Trends: a compendium of data on global change. Tech. rep., Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA

  • Matthews E (1985) Atlas of archived vegetation, land use, and seasonal albedo data sets. NASA Technical Memorandum 86199, Goddard Institute for Space Studies, New York

  • Matthews HD, Eby M, Weaver AJ, Hawkins BJ (2005) Primary productivity control of simulated carbon cycle-climate feedbacks. Geophys Res Lett 32:L14708

    Article  Google Scholar 

  • Meehl GA, Washington WM, Collins WD, Alblaster JM, Hu A, Buja LE, Strand WG, Teng H (2005) How much more global warming and sea level rise? Science 307:1769–1772

    Article  Google Scholar 

  • Miller L, Douglas BC (2004) Mass and volume contributions to twentieth-century global sea level rise. Nature 428:406–409

    Article  Google Scholar 

  • Mitrovica JX, Tamislea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of sea-level change. Nature 409:1026–1029

    Article  Google Scholar 

  • Myers RH, Montgomery DC (1995) Response surface methodology: process and product optimization using design of experiments. Wiley, New York

    Google Scholar 

  • Olson JS, Watts JA, Allison LJ (1985) Major world ecosystem complexes ranked by carbon in live vegetation. Tech. Rep. NDP-017, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee

  • Parkinson C (2002) Trends in the length of the southern ocean sea-ice season, 1979–99. Ann Glaciol 34(1):435–440

    Article  Google Scholar 

  • Parkinson C, Cavalieri D, Gloersen P, Zwally H, Comiso J (1999) Arctic sea ice extents, areas and trends, 1978–1996. J Geophys Res (Oceans) 104(C9):20837–20856

    Article  Google Scholar 

  • Peixoto JP, Oort AH (1991) Physics of climate. 520pp. AIP Press

  • Plattner G-K, Joos F, Stocker TF, Marchal O (2001) Feedback mechanisms and sensitivities of ocean carbon uptake under global warming. Tellus 53B:564–592

    Google Scholar 

  • Price AR, Xue G, Yool A, Lunt DJ, Valdes PJ, Lenton TM, Wason JL, Pound GE, Cox SJ, the GENIE team (2006) Optimisation of integrated earth system model components using grid-enabled data management and computation. Concurrency and Computation: Practice and Experience (in press)

  • Rahmstorf S, Ganopolski A (1999) Long term global warming scenarios computed with an efficient coupled climate model. Clim Change 43:353–367

    Article  Google Scholar 

  • Ridgwell AJ (2001) Glacial-interglacial perturbations in the global carbon cycle. Ph.D. thesis, University of East Anglia

  • Rignot E, Thomas RH (2002) Mass balance of polar ice sheets. Science 297:1502–1506

    Article  Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  Google Scholar 

  • Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S (1998) Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393:245–249

    Article  Google Scholar 

  • Semtner AJ (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6:379–389

    Article  Google Scholar 

  • Statnikov RB, Matuzov JB (1995) Multicriteria optimization and engineering. Chapman and Hall, New York

    Google Scholar 

  • Stocker TF, Schmittner A (1997) Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature 388:862–865

    Article  Google Scholar 

  • Stroeve JC, Serreze MC, Fetterer F, Arbetter T, Meier W, Maslanik J, Knowles K (2005) Tracking the Arctic’s shrinking ice cover: another extreme September minimum in 2004. Geophys Res Lett 32:L04501

    Article  Google Scholar 

  • Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tillbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res II 49:1601–1622

    Article  Google Scholar 

  • Thompson SL, Govindasamy B, Mirin A, Caldeira K, Delire C, Milovich J, Wickett M, Erickson D (2004) Quantifying the effects of CO2-fertilized vegetation on future global climate and carbon dynamics. Geophys Res Lett 31:L23211

    Article  Google Scholar 

  • Toggweiler JR, Samuels B (1998) On the ocean’s large-scale circulation near the limit of no vertical mixing. J Phys Oceanogr 28(9):1832–1852

    Article  Google Scholar 

  • Weaver AJ, Eby M, Weibe EC, Bitz CM, Duffy PB, Ewen TL, Fanning AF, Holland MM, MacFadyen A, Matthews HD, Meissner KJ, Saenko O, Schmittner A, Wang H, Yoshimori M (2001) The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates. Atmos-Ocean 39(4):361–428

    Google Scholar 

  • Williamson MS, Lenton TM, Shepherd JG, Edwards NR (2006) An efficient numerical terrestrial scheme (ENTS) for fast earth system modelling. Tyndall Centre Working Paper 83

  • Yuret D, Maza M (1993) Dynamic hill climbing: overcoming the limitations of optimization techniques. In: Proceedings of the second Turkish symposium on artificial intelligence and neural networks, pp 254–260

  • Zeng N, Qian H, Munoz E, Iacono R (2004) How strong is carbon cycle-climate feedback under global warming. Geophys Res Lett 31:L20203

    Article  Google Scholar 

Download references

Acknowledgements

This work is a joint output of the Grid ENabled Integrated Earth system model (GENIE) project of the UK Natural Environment Research Council (NERC) e-Science programme (NER/T/S/2002/00217) and the Tyndall Centre for Climate Change Research (T3.18).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to T. M. Lenton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenton, T.M., Williamson, M.S., Edwards, N.R. et al. Millennial timescale carbon cycle and climate change in an efficient Earth system model. Clim Dyn 26, 687–711 (2006). https://doi.org/10.1007/s00382-006-0109-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-006-0109-9

Keywords

Navigation