Skip to main content

Negative learning

Abstract

New technical information may lead to scientific beliefs that diverge over time from the a posteriori right answer. We call this phenomenon, which is particularly problematic in the global change arena, negative learning. Negative learning may have affected policy in important cases, including stratospheric ozone depletion, dynamics of the West Antarctic ice sheet, and population and energy projections. We simulate negative learning in the context of climate change with a formal model that embeds the concept within the Bayesian framework, illustrating that it may lead to errant decisions and large welfare losses to society. Based on these cases, we suggest approaches to scientific assessment and decision making that could mitigate the problem. Application of the tools of science history to the study of learning in global change, including critical examination of the assessment process to understand how judgments are made, could provide important insights on how to improve the flow of information to policy makers.

References

  1. Abbott A (2005) Gut feeling secures medical Nobel for Australian doctors. Nature 437:801

    Article  Google Scholar 

  2. Alley RB, Clark PU, Huybrechts P, Joughin I (2005) Ice-sheet and sea-level changes. Science 310:456–460 DOI 10.1126/science.1114613

    Article  Google Scholar 

  3. Andronova NG, Schlesinger ME (2001) Objective estimation of the probability density function for climate sensitivity. J Geophys Res 106(D19):22,605–22,611

    Article  Google Scholar 

  4. Arrow KJ, Fisher AC (1974) Environmental protection, uncertainty, and irreversibility. Q J Econ 88:312–319

    Article  Google Scholar 

  5. Benedick R (1998) Ozone diplomacy: new directions in safeguarding the planet. Harvard Univ Press, Cambridge, MA

    Google Scholar 

  6. Bongaarts J, Bulatao RA (eds) (2000) Beyond six billion: forecasting the world’s population. National Academy Press, Washington, DC

  7. Christie M (2001) Ozone layer: a philosophy of science perspective. Cambridge Univ Press, Cambridge, UK, New York

    Google Scholar 

  8. Craig PP, Gadgil A, Koomey JG (2002) What can history teach us? A retrospective examination of long-term energy forecasts for the United States. Annu Rev Energy Environ 27:83–118

    Article  Google Scholar 

  9. Crutzen P, Oppenheimer M (2008) Learning about ozone depletion. Clim Change (this issue). DOI 10.1007/s10584-008-9400-6

  10. Draper D (1995) Assessment and propagation of model uncertainty. J R Stat Soc Ser B Stat Methodol 57:45–97

    Google Scholar 

  11. Frederick S, Loewenstein G, O’Donoghue T (2002) Time discounting and time preference: a critical review. J Econ Lit XL:351–401

    Article  Google Scholar 

  12. Funtowicz SO, Ravetz JR (1992) The emergence of postnormal science. In: von Schomberg R (ed) Science, politics, and morality. Kluwer Academic, Dordrecht, pp 85–123

    Google Scholar 

  13. Füssel H-M (2007) Methodological and empirical flaws in the design and application of simple climate-economy models. Clim Change 81:161–185

    Article  Google Scholar 

  14. Ha-Duong M, Mégie G, Hauglustaine D (2003) A pro-active stratospheric ozone protection scenario. Global Environ Change 13:43–49

    Article  Google Scholar 

  15. Hall J, Fu G, Lawry J (2007) Imprecise probabilities of climate change: aggregation of fuzzy scenarios and model uncertainties. Clim Change 81:265–281

    Article  Google Scholar 

  16. Hansen JE (2005) Slippery slope: How much global warming constitutes “dangerous anthropogenic interference”? Clim Change 68:269–279

    Article  Google Scholar 

  17. Henrion M, Fischhoff B (1986) Assessing uncertainty in physical constants. Am J Phys 54:791–797

    Article  Google Scholar 

  18. Huntington HG (1994) Oil price forecasting in the 1980s: what went wrong? Energy J 15:1–22

    Google Scholar 

  19. Jones RA, Ostroy JM (1984) Flexibility and uncertainty. Revs Econ Studies L1:13–32

    Article  Google Scholar 

  20. Joos F, Müller-Fürstenberger G, Stephan G (1999) Correcting the carbon cycle representation: how important is it for the economics of climate change? Environ Model Assess 4:133–140

    Article  Google Scholar 

  21. Kaufmann R (1997) Assessing the dice model: uncertainty associated with the emission and retention of greenhouse gases. Clim Change 35:435–448

    Article  Google Scholar 

  22. Keilman N (1999) How accurate are United Nations population forecasts? In: Lutz W, Vaupel JW, Ahlburg DA (eds) Issue supplement: frontiers of population forecasting, Pop Develop Rev 24:15–41

  23. Keller K, McInerney D (2007) The dynamics of learning about a climate threshold. Clim Dyn 30:321–332 DOI 10.1007/s00382–007–0290–5

    Google Scholar 

  24. Keller K, Bolker BM, Bradford DF (2004) Uncertain climate thresholds and optimal economic growth. J Environ Econ Manage 48:723–741

    Article  Google Scholar 

  25. Kelly DL, Kolstad CD (1999) Bayesian learning, growth, and pollution. J Econ Dyn Control 23:491–518

    Article  Google Scholar 

  26. Kitcher P (1993) The advancement of science: science without legends, objectivity without illusions. Oxford Univ Press, New York

    Google Scholar 

  27. Kolstad CD (1996) Learning and stock effects in environmental regulation: the case of greenhouse gas emissions. J Environ Econ Manage 31:1–18

    Article  Google Scholar 

  28. Kuhn TS (1962) The structure of scientific revolutions. Univ of Chicago Press, Chicago

    Google Scholar 

  29. Lange A (2003) Climate change and the irreversibility effect – combining expected utility and maximin. Environ Res Econ 25:417–434

    Article  Google Scholar 

  30. Lee R, Tuljapurkari S, Lee RD, Auerback AJ (eds) (2000) Demographic change and fiscal policy. Cambridge Univ Press, Cambridge, UK

  31. Lempert RJ, Schlesinger ME, Bankes SC (1996) When we don’t know the costs or the benefits: adaptive strategies for abating climate change. Clim Change 33:235–274

    Article  Google Scholar 

  32. Lempert RJ, Popper SW, Bankes SC (2003) Shaping the next one hundred years: new methods for quantitative, long-term policy analysis. Rand Corporation, Santa Monica

    Google Scholar 

  33. Lenton TM et al (2008) Tipping elements in the earth’s climate system. PNAS 105:1786–1793

    Article  Google Scholar 

  34. Little C et al (2007) Toward a new generation of ice sheet models. Eos 88:578–579

    Article  Google Scholar 

  35. Lutz W, Sanderson W, Scherbov S (2001) The end of world population growth. Nature 412:543–545

    Article  Google Scholar 

  36. MacAyeal DR (1992) Irregular oscillations of the West Antarctic ice sheet. Nature 359:29–32

    Article  Google Scholar 

  37. Morgan MG, Henrion M (1990) Uncertainty: a guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge Univ Press, Cambridge, New York

    Google Scholar 

  38. Morgan MG, Kandlikar M, Risbey J, Dowlatabadi H (1999) Why conventional tools for policy analysis are often inadequate for problems of global change. Clim Change 41:271–281

    Article  Google Scholar 

  39. Moss RH, Schneider S (2000). In: Pachauri R, Taniguchi T, Tanaka K (eds) Guidance papers on the cross cutting issues of the Third Assessment Report of the IPCC. IPCC, Geneva

  40. Nordhaus WD, Boyer J (2000) Warming the world: economic models of global warming. MIT Press, Cambridge, Mass

    Google Scholar 

  41. NRC (1984) Causes and effects of changes in stratospheric ozone: update 1983. National Academy Press, Washington, DC

    Google Scholar 

  42. O’Neill BC, Scherbov S, Lutz W (1999) The long-term effect of the timing of fertility decline on population size. Pop Develop Rev 25:749–756

    Article  Google Scholar 

  43. Oppenheimer M (1998) Global warming and the stability of the West Antarctic ice sheet. Nature 393:325–332

    Article  Google Scholar 

  44. Oppenheimer M, Alley RB (2004) The West Antarctic ice sheet and long term climate policy. Clim Change 64:1–10

    Article  Google Scholar 

  45. Oppenheimer M, O’Neill BC, Webster M, Agrawala S (2007) The limits of consensus. Science 317:1505–1506

    Article  Google Scholar 

  46. Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263:641–646

    Article  Google Scholar 

  47. Overpeck JT, Otto-Bliesner BL, Miller GH et al (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311:1747–1750

    Article  Google Scholar 

  48. Parson E (2003) Protecting the ozone layer: science and strategy. Oxford Univ Press, Oxford, New York

    Google Scholar 

  49. Patt AG (1999) Extreme outcomes: the strategic treatment of low probability events in scientific assessments. Risk Decis Policy 4:1–15

    Article  Google Scholar 

  50. Patt AG (2007) Assessing model-based and conflict-based uncertainty. Glob Environ Change 17:37–46

    Article  Google Scholar 

  51. Pielke RA Jr (2001) Room for doubt. Nature 410:151

    Article  Google Scholar 

  52. Popp D (2004) ENTICE: endogenous technological change in the DICE model of global warming. J Environ Econ Manage 48:742–768

    Article  Google Scholar 

  53. Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315:368–370

    Article  Google Scholar 

  54. Rahmstorf S, Cazenave A, Church JA, Hansen JE, Keeling RF, Parker DE, Somerville RCJ (2007) Recent climate observations compared to projections. Science 316:709

    Article  Google Scholar 

  55. Rowland FS (1989) Chlorofluorocarbons and the depletion of stratospheric ozone. Am Sci 77:36–45

    Google Scholar 

  56. Schelling TC (1994) Intergenerational discounting. Energy Policy 23:395–402

    Article  Google Scholar 

  57. Schneider SH, Turner BL, Garriga HM (1998) Imaginable surprise in global change science. J Risk Res 1:165–185

    Article  Google Scholar 

  58. Shlyakhter AI (1994) An improved framework for uncertainty analysis: accounting for unsuspected errors. Risk Anal 14:441–447

    Article  Google Scholar 

  59. Small MJ, Fischbeck PS (1999) False precision in Bayesian updating with incomplete models. J Hum Ecol Risk Assess 5(2):291–304

    Article  Google Scholar 

  60. Somerville R, Le Treut H, Cubasch U, Ding Y, Mauritzen C, Mokssit A, Peterson T, Prather M (2007) Historical overview of climate change. In: Solomon S, Qin D et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ Press, Cambridge, UK, New York

    Google Scholar 

  61. Tversky A, Kahneman D (1974) Judgment under uncertainty: heuristics and biases. Science 185:1124–1131

    Article  Google Scholar 

  62. UN Department of Economic and Social Affairs, Population Division (2005) World population prospects: the 2004 revision. United Nations, New York

    Google Scholar 

  63. van de Kaa DJ (1987) Europe’s second demographic transition. Population Bulletin 42(1), The Population Reference Bureau, Washington, DC

  64. van Vuuren D, O’Neill BC (2006) The consistency of IPCC’s SRES scenarios to 1990–2000 trends and recent projections. Clim Change 75:9–46

    Article  Google Scholar 

  65. Vaughan DG (2008) West Antarctic ice sheet collapse − the fall and rise of a paradigm. Clim Change, in press

  66. Vaughan DG, Spouge JR (2002) Risk estimation of collapse of the West Antarctic ice sheet. Clim Change 52:65–91

    Article  Google Scholar 

  67. Webster MD (2002) The curious role of learning: should we wait for more data? Energy J 23:97–119

    Google Scholar 

  68. Webster MD, Jakobovits L, Norton J (2008) Learning about climate change and implications for near-term policy. Clim Change (this issue). DOI 10.1007/s10584-008-9406-0

  69. WMO (1986) Atmospheric ozone 1985: assessment of our understanding of the processes controlling its present distribution and change. Rep No 16, WMO, Geneva

  70. WMO (1988) Report of the international ozone trends panel-1988. Global Ozone Research and Monitoring Project, Rep No18, WMO, Geneva

  71. WMO (1991) Scientific assessment of stratospheric ozone 1991. Rep No 25, WMO, Geneva

  72. WMO (2006) Scientific assessment of ozone depletion: 2006, executive summary. WMO and UN Environment Program, Geneva

    Google Scholar 

  73. Yohe G, Andronova NG, Schlesinger ME (2004) To hedge or not against an uncertain climate future? Science 306:416–417

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Oppenheimer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1 (DOC 1.95 MB)

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Oppenheimer, M., O’Neill, B.C. & Webster, M. Negative learning. Climatic Change 89, 155–172 (2008). https://doi.org/10.1007/s10584-008-9405-1

Download citation

Keywords

  • Ozone
  • Climate Sensitivity
  • Total Fertility Rate
  • Ozone Depletion
  • Expert Elicitation