Skip to main content
Log in

Retention of cesium, plutonium and americium by engineered and natural barriers

  • Radionuclides In The Environment, Radioecology
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

Safety assessment of low and intermediate level waste repository requires sorption parameters and understanding of the radionuclides sorption-desorption mechanism. In order to obtain realistic sorption data for safety relevant radionuclides present in cement (concrete) based near surface repository, some preliminary studies have been carried out. Batch sorption experiments were conducted with two clay samples to determine Kd values of Cs, Pu and Am under a wide range of geochemical conditions. Cs, Pu and Am Kd values were determined for rainwater, groundwater and cement-water of different chemical compositions. Cs, Pu, Am Kd values ranged from 450 to 9700, from 15000 to 21000 and from 15000 to 80000 ml/g, respectively. Iron speciation was determined using Mössbauer spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Onodera Y. et al.: Journal of Contaminant Hydrology 35 (1998) 131.

    Article  Google Scholar 

  2. Bostick B.C. et al.: Environ. Sci. Technol. 36 (2002) 2670.

    Article  Google Scholar 

  3. Katz J. J., Seaborg G. T. and Morss L. R. (Eds.): The chemistry of actinides, Moscow, 1997 pp. 823 (in Russian).

  4. Chopin G. R.: J. Nucl. Radiochem. Sci. 6(1) (2005) 1.

    Google Scholar 

  5. Stumm W.: In: Chemistry of Solid-Water Interface, New York: Wiley, 1992, pp. 323.

    Google Scholar 

  6. United States Office of Air and Radiation EPA Report 402-R-99-004A Understanding variation in partition coefficients, Kd values, 1999, pp. 450.

  7. Characterization of Materials Suitable for Engineering Barriers of Near Surface Repository of Radioactive Waste, Ecofirma, 2004 (in Lithuanian).

  8. Berthard P. A. and Choppin G. R.: Radiochim. Acta 31 (1985) 115.

    Google Scholar 

  9. Lujaniene G. et al.: Lithuanian Journal of Physics 45, 4 (2005) 273.

    Google Scholar 

  10. Sahuquillo A., Rigol A. and Rauret G.: Trends in Anal. Chem. 22 (2003) 152.

    Article  Google Scholar 

  11. G. Rauret et al.: J. Environ. Monitor. 1 (1999) 57–61.

    Article  Google Scholar 

  12. Curti E: Appl. Geochim. 14 (1999) 433.

    Article  Google Scholar 

  13. Zavarin M. et al.: Radiochim. Acta 93 (2005) 93.

    Article  Google Scholar 

  14. Shanbhag P.M., Morse J.W.: Geochim. Cosmochim. Acta 46 (1982) 241.

    Article  ADS  Google Scholar 

  15. Hiemstra T. and Van Riemsdijk W. H.: Colloids and Surfaces 59 (1991) 7.

    Article  Google Scholar 

  16. Hiemstra T., De Wit C.M. and Van Riemsdijk W.H.: J. Colloid Interface Sci. 133 (1989) 105.

    Article  Google Scholar 

  17. Sanchez A.L., Murray J.W., and Sibley T.H.: Geochim. et Cosmochim. Acta 49 (1985) 2297.

    Article  ADS  Google Scholar 

  18. Fujita T. and Tsukamoto M.: Mat. Res. Soc. Symp. Proc. 465 (1997) 781.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lujaniene, G., Šapolaite, J., Amulevičius, A. et al. Retention of cesium, plutonium and americium by engineered and natural barriers. Czech J Phys 56, D103–D110 (2006). https://doi.org/10.1007/s10582-006-1005-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-006-1005-6

Keywords

Navigation