Skip to main content
Log in

Thin-target excitation functions: a powerful tool for optimising yield, specific activity and radionuclidic purity of accelerator-produced radionuclides

  • Part II
  • Session 5: Production and Application of Radioniclides
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

In accelerator production of radionuclides, thin-target yield yEOIB(E) vs. projectile energy, at the end of an instantaneous bombardment (EOIB), is the slope at the “origin” of the growth curve of the activity of a radionuclide per unit beam current vs. irradiation time, for a target in which the energy loss is negligible in respect to projectile energy. Conversely, thick-target yield Y(E,ΔE) is a function of particle energy E (MeV) onto the target and energy loss ΔE (MeV) into target itself, obtained experimentally or by integration of thin-target excitation function y(E). Some local maxima on Y(E,ΔE) curves are present in many cases. As a relevant conclusion, use of target thickness larger than the “effective” value is unsuitable, due to larger specific power deposited by the beam in target material, instead of cooling system. Moreover, increasing amount of target material leads to a lower value of specific activity, due to larger amounts and volumes of chemicals and equipment. Y(E,ΔE) curves and their maxima permit calculating optimal irradiation conditions to produce radionuclides with maximum yield, specific activity and radionuclidic purity. In order to join the advantages of accurate knowledge of thin-target excitation functions, very selective radiochemical separations were optimised, without intentional addition of an isotopic carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sabbioni E., Goetz L., Birattari C. and Bonardi M.: Sci. Total Env. 17 (1981) 257.

    Article  Google Scholar 

  2. Sabbioni E. et al.: J. Radional. Nucl. Chem., 160 (1992) 549.

    Article  Google Scholar 

  3. Gallorini M., Bonardi M., Groppi F. and Saponaro S.: J. Radioanal. Nucl. Chem. 193 (1995) 39.

    Article  Google Scholar 

  4. Bonardi M., Gallorini M., Groppi F. and Saponaro S.: Microchem. J. 51 (1995) 278.

    Article  Google Scholar 

  5. Bonardi M. et al.: J. Radioanal. Nucl. Chem. 236 (1998) 159.

    Article  Google Scholar 

  6. Groppi F., Bonardi M., Birattari C., Gallorini M. and Gini L.: J. Radioanal. Nucl. Chem. 249 (2001) 289.

    Article  Google Scholar 

  7. Wolf A.P., Tewson, T.J. and Welch M.J.: J. Nucl. Med. 22 (1981) 392.

    Google Scholar 

  8. Fowler J.S. and Wolf A.P.: The synthesis of carbon-11, fluorine-18, and nitrogen-13 labelled radiotracers for biomedical applications, Technical Information Center, US DOE, Springfield, Virginia, USA, NAS-NS-3201, September 1982, p. 28.

    Google Scholar 

  9. Friedlander G., Kennedy J.K., Macias E.S. and Miller J.M.: Nuclear and Radiochemistry, 3rd Ed., John Wiley and Sons, New York, USA, 1981.

    Google Scholar 

  10. Lieser K.H.: Nuclear and Radiochemistry. Fundamentals and Applications. Revised Ed., Wiley and Verlag, VHC, Berlin, Germany, 2001.

    Google Scholar 

  11. Mills I., Cvitas T., Loman K., Kallay N. and Kuchitsu K. (Eds.) Quantities, Units and Symbols in Physical Chemistry, 2-nd Ed., Blackwell Scientific Publications, Oxford, UK, 1993, pp. 7, 42

    Google Scholar 

  12. Inczedy J., Lengyel T., Ure A. M., Gelencser A. and Hulanicki A. (Eds.): Radioanalytical Methods, In: IUPAC Compendium of Analytical Nomenclature, definitive rules 1997, 3-rd Ed., UK, 2000. Chapter 16.

  13. Firestone R.B., Baglin C.M. and Chu F.S.Y.: Table of Isotopes, 8-th Ed., 1998, Update on CD-ROM, John Wiley and Sons, New York, USA, 1998.

    Google Scholar 

  14. McNaught A.D. and Wilkinson A. (Eds.): IUPAC Compendium of Chemical Terminology, Golden Book, 2-nd Ed., Blackwell Science, Oxford, UK, 1997.

    Google Scholar 

  15. Ruzicka J. and Stary J.: Substoichiometry in Radiochemical Analysis, Int. Series of Monographs in Analytical Chemistry, Vol. 30, Pergamon Press, Oxford, UK, 1968.

    Google Scholar 

  16. Toelgyessy J., Braun T. and Kyrs M.: Isotope Dilution Analysis, Pergamon Press, Oxford, UK, 1972.

    Google Scholar 

  17. Toelgyessy J. and Klehr E.H.: Nuclear Environmental Chemical Analysis, Ellis Horwood Limited, Chichester, UK, 1987.

    Google Scholar 

  18. Panico R., Powell W.H. and Richer J.C. (Eds.): A Guide to IUPAC Nomenclature of Organic Compounds, Recommendations 1993, Blackwell Scientific Publications, Oxford, UK, 1994.

    Google Scholar 

  19. McCleverthy J.A. and Connelly N.G. (Eds.): Isotopically Modified Inorganic Compounds, In: IUPAC Nomenclature of Inorganic Chemistry II, Recommendations 2000, RSC, UK, 2001, p. 23.

    Google Scholar 

  20. Nesmeyanov A.N.: Radiochemistry, MIR Publishers, English translation, Moscow, Russia, 1974, pp. 49, 167.

    Google Scholar 

  21. Bonardi M. and Groppi F.: Report INFN/TC-01/04, SIS-Pubblicazioni, Frascati, Roma, 2001, Italy.

    Google Scholar 

  22. Bonardi M.L. and Groppi F.: Microchem. J. 73 (2002) 153.

    Article  Google Scholar 

  23. Leigh G.J. (Ed.): IUPAC Nomenclature of Inorganic Chemistry, Recommendations 1990, Blackwell Scientific Publisher, Oxford, UK, 1990.

    Google Scholar 

  24. Birattari C., Groppi F. and Sabbioni E.: Report INFN/TC-01/22, SIS Pubblicazioni, Frascati, Roma, Italy, 2001.

    Google Scholar 

  25. Bonardi M., Birattari C., Groppi F. and Sabbioni E., Appl. Radiat. Isot., 57/5 (2002) 617–635.

    Article  Google Scholar 

  26. Bonardi M. et al.: J. Radioanal. Nucl. Chem. 195 (1995) 227.

    Article  Google Scholar 

  27. Bonardi M., Groppi F., Birattari C., Arginelli D.: J. Analyt. Environ. Chem. 92 (2002) 795.

    Google Scholar 

  28. Bonardi M. et al.: J. Radioanal. Nucl. Chem. 236 (1998) 159.

    Article  Google Scholar 

  29. Gallorini M., Rizzio E., Birattari C., Bonardi M. and Groppi F.: Biol. Trace El. Res., 71–72 (1999) 209.

    Article  Google Scholar 

  30. Bonardi, M.: In: IAEA Consultant's Meeting on “Nuclear Data Requirements for Medical Radioisotope Production”, Tokyo, April 1987, IAEA Document, INDC(NDS)-195/GZ, IAEA, Vienna, Jan 1988, p. 98.

    Google Scholar 

  31. IAEA-TECDOC-1211, IAEA, Vienna, Austria, May 2001.

  32. Basile D. et al.: Int. J. Appl. Rad. Isot. 32 (1981) 403.

    Article  Google Scholar 

  33. Bonardi M. and Birattari C.: J. Radioanal. Chem. 76 (1983) 311.

    Article  Google Scholar 

  34. Smith D.L.: Probability, Statistics, and Data Uncertainties in Nuclear Science and Technology. OECD/NEA, ANS, Illinois, USA, 1991.

  35. Kleinbaum D.G. and Kupper L.L.: Applied Regression Analysis and Other Multivariable Methods, Duxbury Press, Boston, Massachusetts, USA, 1986.

    Google Scholar 

  36. Ziegler F.: SRIM 2000 code, IBM-Research, Yorktown, New York, USA, 2000.

    Google Scholar 

  37. Abbas K. et al.: J. Labelled Cpd. Radiopharm. 44 (2001) S802.

    Google Scholar 

  38. Bonardi M. et al.: European J. Nucl. Med. 28 (2001) PS_727.

    Google Scholar 

  39. Groppi F., Birattari C., Bonardi M. and Gini L.: Microchem. J. 73 (2002) 203.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Acknowledgement: This paper is dedicated to Alfred P. Wolf (1999†) of Brookhaven National Laboratory, BNL, Upton, New York, USA, who clarified the concept and terminology concerning specific activity of radionuclides and labelled compounds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonardi, M.L., Groppi, F., Birattari, C. et al. Thin-target excitation functions: a powerful tool for optimising yield, specific activity and radionuclidic purity of accelerator-produced radionuclides. Czech J Phys 53 (Suppl 1), A393–A403 (2003). https://doi.org/10.1007/s10582-003-0051-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-003-0051-6

Keywords

Navigation