Skip to main content
Log in

Imaging approaches for chromosome structures

  • Review
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

This review describes image analyses for chromosome visible structures, focusing on the chromosome imaging system CHIAS (Chromosome Image Analyzing System). CHIAS is the first comprehensive imaging system for the analysis and characterization of plant chromosomes. A simulation method for human vision for capturing band positive regions was developed and used for the image analysis of large plant chromosomes with bands. Applying this method to C-banded Crepis chromosomes enabled recognition of band positive regions as seen by human vision. Furthermore, a new image parameter, condensation pattern was developed and successfully applied to identify small plant chromosomes such as rice and brassicas. Condensation profile (CP) derived from condensation pattern was also effective in developing quantitative chromosome maps. The result was quantitative chromosomal maps of several plants with small chromosomes, including Arabidopsis, diploid brassicas, rapeseed, rice, spinach, and sugarcane. In the final chapter, various applications of imaging techniques to the analysis of pachytene chromosomes, improved visibility of multicolor FISH images, 3D reconstruction of a human chromosome based on cross-section images obtained by a FIB/SEM, automatic extraction of chromosomal regions by machine learning, etc. are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BAC:

bacterial artificial chromosome

CCD:

charge-coupled device

CEN:

centromere

CHIAS:

Chromosome Image Analyzing System

CP:

condensation profile (density profile at the mid-rib of chromatid)

DAPI:

4,6-diamidino-2-phenylindole

DRWID:

drawing idiogram

EDF:

extended DNA fiber

FIB/SEM:

focused ion beam/scanning electron microscope

FISH:

fluorescence in situ hybridization

Idiogram:

quantitative chromosome map

IRGSP:

International Rice Genome Sequencing Project

LUT:

lookup table

NOR:

nucleolar organizing region

OpenCV:

Open Source Computer Vision Library

PAC:

P1-derived artificial chromosome

PI:

propidium iodide

rDNA:

ribosomal DNA

SDK:

software development kit

Trs-A:

tandem repeat sequence

References

  • Apisitwanich S, Shishido R, Akiyama Y, Fukui K (2000) Quantitative chromosome map of a representative indica rice. Euphytica 116:161–166

    CAS  Google Scholar 

  • Auer N, Hrdina A, Hiremath C, Vcelar S, Baumann M, Borth N, Jadhav V (2018) ChromaWizard: an open source image analysis software for multicolor fluorescence in situ hybridization analysis. Cytometry A 93:749–754. https://doi.org/10.1002/cyto.a.23505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caspersson T, Lomakka G, Møller A (1971a) Computerized chromosome identification by aid of the quinacrine mustard fluorescence technique. Hereditas 67:103–109

    Google Scholar 

  • Caspersson T, Lomakka G, Zech L (1971b) The 24 fluorescence patterns of the human metaphase chromosomes—distinguishing characters and variability. Hereditas 67:89–102

    Google Scholar 

  • Finnon P, Lloyd D, Edwards A (1986) An assessment of the metaphase finding capability of the Cytoscan 110 Mutation. Res/Environ Mutagenesis Relat Subj 164:101–108

    CAS  Google Scholar 

  • Fukui K (1985) Identification of plant chromosome by image analysis method. Cell (Tokyo) 17:145–149

    Google Scholar 

  • Fukui K (1986) Standardization of karyotyping plant chromosomes by a newly developed chromosome image analyzing system (CHIAS). Theor Appl Genet 72:27–32

    CAS  PubMed  Google Scholar 

  • Fukui K (2016) Contribution of nanotechnology to chromosome science. Chromosome Sci 19:51–56

    CAS  Google Scholar 

  • Fukui K, Iijima K (1991) Somatic chromosome map of rice by imaging methods. Theor Appl Genet 81:589–596

    CAS  PubMed  Google Scholar 

  • Fukui K, Iijima K (1992) Manual on rice chromosomes 2nd ver. Misc Pub Natl Inst Agrobiol Resour 4:1–25

    Google Scholar 

  • Fukui K, Kakeda K (1990) Quantitative karyotyping of barley chromosomes by image analysis methods. Genome 33:450–458

    Google Scholar 

  • Fukui K, Kamisugi Y (1995) Mapping of C-banded Crepis chromosomes by imaging methods. Chromosom Res 3:79–86

    CAS  Google Scholar 

  • Fukui K, Mukai Y (1988) Condensation pattern as a new image parameter for identification of small chromosomes in plants. Jpn J Genet 63:359–366

    Google Scholar 

  • Fukui K, Nakayama S, Ohmido N, Yoshiaki H, Yamabe M (1998) Quantitative karyotyping of three diploid Brassica species by imaging methods and localization of 45s rDNA loci on the identified chromosomes. Theor Appl Genet 96:325–330

    CAS  PubMed  Google Scholar 

  • Fukui K, Ohmido N, Khush G (1994) Variability in rDNA loci in the genus Oryza detected through fluorescence in situ hybridization. Theor Appl Genet 87:893–899

    CAS  PubMed  Google Scholar 

  • Fukui K, Ohmido N, Wako T (2000) Smallness: gain and loss in plant chromosome research. In: Chromosomes Today 13. Springer Birkhäuser, pp 287-301

  • Graham J, Taylor CJ (1980) Automated chromosome analysis using the Magiscan Image Analyser. Anal Quant Cytol 2:237–242

    CAS  PubMed  Google Scholar 

  • Gustafson J, Butler E, McIntyre C (1990) Physical mapping of a low-copy DNA sequence in rye (Secale cereale L.). Proc Natl Acad Sci 87:1899–1902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ha S, Moore PH, Heinz D, Kato S, Ohmido N, Fukui K (1999) Quantitative chromosome map of the polyploid Saccharum spontaneum by multicolor fluorescence in situ hybridization and imaging methods. Plant Mol Biol 39:1165–1173

    CAS  PubMed  Google Scholar 

  • Hamano T, Dwiranti A, Kaneyoshi K, Fukuda S, Kometani R, Nakao M, Takata H, Uchiyama S, Ohmido N, Fukui K (2014) Chromosome interior observation by focused ion beam/scanning electron microscopy (FIB/SEM) using ionic liquid technique. Microsc Microanal 20:1340–1347

    CAS  PubMed  Google Scholar 

  • Hayashi M, Miyahara A, Sato S, Kato T, Yoshikawa M, Taketa M, Hayashi M, Pedrosa A, Onda R, Imaizumi-Anraku H, Bachmair A, Sandal N, Stougaard J, Murooka Y, Tabata S, Kawasaki S, Kawaguchi M, Harada K (2001) Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F2 population. DNA Res 8:301–310

    CAS  PubMed  Google Scholar 

  • Iijima K, Kakeda K, Fukui K (1991) Identification and characterization of somatic rice chromosomes by imaging methods. Theor Appl Genet 81:597–605

    CAS  PubMed  Google Scholar 

  • Ito M, Miyamoto J, Mori Y, Fujimoto S, Uchiumi T, Abe M, Suzuki A, Tabata S, Fukui K (2000a) Genome and chromosome dimensions of Lotus japonicus. J Plant Res 113:435–442

    Google Scholar 

  • Ito M, Ohmido N, Akiyama Y, Fukui K (2000b) Quantitative chromosome map of Arabidopsis thaliana L. by imaging methods. Cytologia 65:325–331

    CAS  Google Scholar 

  • Ito M, Ohmido N, Akiyama Y, Fukui K, Koba T (2000c) Characterization of spinach chromosomes by condensation patterns and physical mapping of 5S and 45S rDNAs by FISH. J Am Soc Hortic Sci 125:59–62

    CAS  Google Scholar 

  • Kakeda K, Fukui K, Yamagata H (1991) Heterochromatic differentiation in barley chromosomes revealed by C- and N-banding techniques. Theor Appl Genet 81:144–150. https://doi.org/10.1007/BF00215715

    Article  CAS  PubMed  Google Scholar 

  • Kakeda K, Yamagata H, Fukui K, Ohno M, Wei Z, Zhu E (1990) High resolution bands in maize chromosomes by G-banding methods. Theor Appl Genet 80:265–272

    CAS  PubMed  Google Scholar 

  • Kamisugi Y, Furuya N, Iijima K, Fukui K (1993) Computer-aided automatic identification of rice chromosomes by image parameters. Chromosom Res 1:189–196

    CAS  Google Scholar 

  • Kamisugi Y, Nakayama S, O’Neil CM, Mathias RJ, Trick M, Fukui K (1998) Visualization of the Brassica self-incompatibility S-locus on identified oilseed rape chromosomes. Plant Mol Biol 38:1081–1087

    CAS  PubMed  Google Scholar 

  • Karpechenko G (1922) The number of chromosomes and genetic correlation of cultivated Cruciferae. Bull Appl Bot Gen Plant Breed 13:3–14

    Google Scholar 

  • Kataoka R, Hara M, Kato S, Isobe S, Sato S, Tabata S, Ohmido N (2012) Integration of linkage and chromosome maps of red clover (Trifolium pratense L.). Cytogenet Genome Res 137:60–69. https://doi.org/10.1159/000339509

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Fukui K (1998) Condensation pattern (CP) analysis of plant chromosomes by an improved chromosome image analysing system, CHIAS III. Chromosom Res 6:473–479

    CAS  Google Scholar 

  • Kato S, Ohmido N, Fukui K (2003) Development of a quantitative pachytene chromosome map in Oryza sativa by imaging methods. Genes Genet Syst 78:155–161

    CAS  PubMed  Google Scholar 

  • Kato S, Ohmido N, Hara M, Kataoka R, Fukui K (2009) Image analysis of small plant chromosomes by using an improved system, CHIAS IV. Chromosome Sci 12:43–50

    Google Scholar 

  • Khush GS, Kinoshita T (1991) Rice karyotype, marker genes, and linkage groups. In: Khush G, Toenniessen GH (eds) Rice biotechnology, vol 6. CAB International and International Rice Research Institute, Wallingford, pp 83–108

    Google Scholar 

  • Kirov I, Khrustaleva L, Laere KV, Soloviev A, Sofie M, Romanov D, Fesenko I (2017) DRAWID: user-friendly java software for chromosome measurements and idiogram drawing. Comp Cytogenet 11:747–757. https://doi.org/10.3897/CompCytogen.v11i4.20830

    Article  PubMed  PubMed Central  Google Scholar 

  • Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412

    PubMed  PubMed Central  Google Scholar 

  • Kuwada Y (1910) A cytological study of Oryza sativa L. Bot Mag (Tokyo) 24:267–280

    Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Google Scholar 

  • Lubs H, Ledley R (1973) Automated analysis of differentially stained human chromosomes. In: Nobel Symp, p 61

  • Lundsteen C, Bjerregaard B, Granum E, Philip J, Philip K (1980) Automatic chromosome analysis: I. A simple method for classification of B-and D-group chromosomes represented by band transition sequences. Clin Genet 17:183–190

    CAS  PubMed  Google Scholar 

  • Marimuthu KM, Selles WD, Neurath PW (1974) Computer analysis of Giemsa banding patterns and automatic classification of human chromosomes. Am J Hum Genet 26:369–377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama S, Fukui K (1997) Quantitative chromosome mapping of small plant chromosomes by improved imaging on CHIAS II. Genes Genet Syst 72:35–40

    CAS  Google Scholar 

  • Ohmido N, Akiyama Y, Fukui K (1998) Physical mapping of unique nucleotide sequences on identified rice chromosomes. Plant Mol Biol 38:1043–1052

    CAS  PubMed  Google Scholar 

  • Ohmido N, Ishimaru A, Kato S, Sato S, Tabata S, Hayashi M, Fukui K (2010) Integration of cytogenetic and genetic linkage maps of Lotus japonicus, a model plant for the legume. Chromosom Res 18:287–299

    CAS  Google Scholar 

  • Ohmido N, Iwata A, Kato S, Wako T, Fukui K (2018) Development of a quantitative pachytene chromosome map and its unification with somatic chromosome and linkage maps of rice (Oryza sativa L.). PLoS One 13:e0195710. https://doi.org/10.1371/journal.pone.0195710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohmido N, Kijima K, Ashikawa I, de Jong JH, Fukui K (2001) Visualization of the terminal structure of rice chromosomes 6 and 12 with multicolor FISH to chromosomes and extended DNA fibers. Plant Mol Biol 47:413–421

    CAS  PubMed  Google Scholar 

  • Ohmido N, Sato S, Tabata S, Fukui K (2007) Chromosome maps of legumes. Chromosom Res 15:97–103. https://doi.org/10.1007/s10577-006-1109-7

    Article  CAS  Google Scholar 

  • Ohmido N, Wako T, Kato S, Fukui K (2016) Image analysis of DNA fiber and nucleus in plants. In: Chromosome and Genomic Engineering in Plants. Springer, pp 171-180

  • Poonperm R, Takata H, Hamano T, Matsuda A, Uchiyama S, Hiraoka Y, Fukui K (2015) Chromosome scaffold is a double-stranded assembly of scaffold proteins. Sci Rep 5:1–10

    Google Scholar 

  • Sakamoto Y, Zacaro A (2009) LEVAN, an IMAGEJ plugin for morphological cytogenetic analysis of mitotic and meiotic chromosomes. Initial version. An open source Java plugin distributed over the Internet from http://rsbweb.nih.gov/ij/ Accessed 16 January 2021.

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder-Reiter E, Pérez-Willard F, Zeile U, Wanner G (2009) Focused ion beam (FIB) combined with high resolution scanning electron microscopy: a promising tool for 3D analysis of chromosome architecture. J Struct Biol 165:97–106

    CAS  PubMed  Google Scholar 

  • Sommer C, Straehle C, Koethe U, Hamprecht FA (2011) Ilastik: interactive learning and segmentation toolkit. In: 2011 IEEE international symposium on biomedical imaging: From nano to macro. IEEE, pp 230-233

  • Sparacino A, Halfer C, Strada E, Tano F, Ditto D (2004) Identification and characterization of somatic chromosomes of red rice (Oryza sativa subs. japonica var. sylvatica) by means of a computerized chromosome image method (CHIA-EA). J Genet Breed 58:295

    Google Scholar 

  • Wako T, Yoshida A, Kato J, Otsuka Y, Ogawa S, Kaneyoshi K, Takata H, Fukui K (2020) Human metaphase chromosome consists of randomly arranged chromatin fibres with up to 30-nm diameter. Sci Rep 10:8948. https://doi.org/10.1038/s41598-020-65842-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Chromosome Link for helpful comments and discussion.

Funding

This work was supported by the grant to K.F. from The Japan Science and Technology Agency (JST) (Strategic International Collaborative Research Program JPMJSC17E2).

Author information

Authors and Affiliations

Authors

Contributions

KF and SK devised and designed the study. They also performed survey and analysis data. Both authors read and approved the manuscript.

Corresponding author

Correspondence to Kiichi Fukui.

Additional information

Responsible Editor: Beth Sullivan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

Suppl. Video1a. Movie for a reconstructed human chromosome based on 224 cross-sectioned images obtained by FIB/SEM (Wako et al. 2020). For the observation of the surface of a human chromosome, the 3D chromosome image can be rotated in any direction. (MP4 1913 kb)

ESM 2

Suppl. Video1b. Movie for the observation of the chromosome interior by virtual cuts of the 3D chromosome image with a plane at any position and any angle. (MP4 597 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukui, K., Kato, S. Imaging approaches for chromosome structures. Chromosome Res 29, 5–17 (2021). https://doi.org/10.1007/s10577-021-09648-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-021-09648-3

Keywords

Navigation