Skip to main content
Log in

Positioning of chromosome 15, 18, X and Y centromeres in sperm cells of fertile individuals and infertile patients with increased level of aneuploidy

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Evidence has been accumulating that individual chromosomes in human sperm cells occupy defined, non-random positions. Our earlier study suggested that abnormal spermatogenesis in carriers of reciprocal translocations was reflected in the changes in the intranuclear topology of sperm chromosomes. The purpose of this study was to determine whether the increased level of disomy of sperm chromosomes may be the factor that can disturb topology within the sperm nuclei. The results obtained indicated that within the sperm nuclei of fertile individuals the centromeres of chromosomes 15, 18, X and Y were localized in a small area that may be a fragment of the chromocentre. When compared with the intranuclear positions of the same chromosomes in sperm nuclei of infertile patients with an increased level of aneuploidy, some disturbances in the centromere area were found. In disomic sperm cells (n + 1) centromeres 15,15 or 18,18 or YY (but not X,X) had a shifted average longitudinal position in comparison with normal sperm cells (n = 23).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki VW, Carrell DT (2003) Human protamines and the developing spermatid: their structure, function, expression and relationship with male infertility. Asian J Androl 5: 315–324.

    PubMed  CAS  Google Scholar 

  • Biggers JD, Whitt WK, Whittingham DG (1971) The culture of mouse embryos in vitro. In: Daniel JC, ed. Methods in Mammalian Embryology. San Francisco: Freeman WH Co., pp. 86–116.

    Google Scholar 

  • Braun RE (2001) Packaging paternal chromosomes with protamine. Nat Genet 28: 10–12.

    Article  PubMed  CAS  Google Scholar 

  • Celik-Ozenci C, Catalanotti J, Jakab A et al. (2003) Human sperm maintain their shape following decondensation and denaturation for fluorescent in situ hybridization: shape analysis and objective morphometry. Biol Reprod 69: 1347–1355.

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2: 292–301.

    Article  PubMed  CAS  Google Scholar 

  • Ferlin A, Arredi B, Foresta C (2006) Genetic causes of male infertility. Reprod Toxicol 22: 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Finch KA, Fonseka KGL, Abogrein A et al. (2008) Nuclear organization in human sperm: preliminary evidence for altered sex chromosome centromere position in infertile males. Hum Reprod 23: 1263–1270.

    Article  PubMed  CAS  Google Scholar 

  • Ford WCL (2001) Biological mechanisms of male infertility. Lancet 357: 1223–1224.

    Article  PubMed  CAS  Google Scholar 

  • Foster HA, Abeydeera LR, Griffin DK, Bridger JM (2005) Non-random chromosome positioning in mammalian sperm nuclei, with migration of the sex chromosomes during late spermatogenesis. J Cell Sci 118: 1811–1820.

    Article  PubMed  CAS  Google Scholar 

  • Fraser L (2004) Structural damage to nuclear DNA in mammalian spermatozoa: its evaluation techniques and relationship with male infertility. Pol J Vet Sci 7: 311–321.

    PubMed  CAS  Google Scholar 

  • Garagna S, Zuccotti M, Thornhill A et al. (2001) Alteration of nuclear architecture in male germ cells of chromosomally derived subfertile mice. J Cell Sci 114: 4429–4434.

    PubMed  CAS  Google Scholar 

  • Gazvani MR, Wilson ED, Richmond DH, Howard PJ, Kingsland CR, Lewis-Jones DI (2000) Role of mitotic control in spermatogenesis. Fertil Steril 74(2): 251–256.

    Article  PubMed  CAS  Google Scholar 

  • Greaves IK, Rens W, Ferguson-Smith MA, Griffin D, Marshall Graves JA (2003) Conservation of chromosome arrangement and position of the X in mammalian sperm suggests functional significance. Chromosome Res 11: 503–512.

    Article  PubMed  CAS  Google Scholar 

  • Gurevitch M, Amiel A, Ben-Zion M, Fejgin M, Bartoov B (2001) Acrocentric centromeres organization within the chromocenter of the human sperm nucleus. Mol Reprod Dev 60: 507–516.

    Article  PubMed  CAS  Google Scholar 

  • Haaf T, Ward DC (1995) Higher order nuclear structure in mammalian sperm revealed by in situ hybridization and extended chromatin fibers. Exp Cell Res 219: 604–611.

    Article  PubMed  CAS  Google Scholar 

  • Hazzouri M, Rousseaux S, Mongelard F et al. (2000) Genome organization in the human sperm nucleus studied by FISH and confocal microscopy. Mol Reprod Dev 55: 307–315.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer-Fender S, Singh PB, Motzkus D (2000) The murine heterochromatin protein M31 is associated with the chromocenter in round spermatids and is a component of mature spermatozoa. Exp Cell Res 254: 72–79.

    Article  PubMed  CAS  Google Scholar 

  • Luetjens CM, Payne C, Schatten G (1999) Non-random chromosome positioning in human sperm and sex chromosome anomalies following intracytoplasmic sperm injection. Lancet 353: 1240.

    Article  PubMed  CAS  Google Scholar 

  • Martianov I, Brancorsini S, Gansmuuler A, Parvinen M, Davidson I, Sassone-Corsi P (2002) Distinct functions of TBP and TLF/TRF2 during spermatogenesis: requirement of TLF for heterochromatic chromocenter formation in haploid round spermatids. Development 129: 945–955.

    PubMed  CAS  Google Scholar 

  • Martin RH (1983) A detailed method for obtaining preparations of human sperm chromosomes. Cytogenet Cell Genet 35(4): 252–256.

    Article  PubMed  CAS  Google Scholar 

  • Martin RH (2005) Mechanisms of nondysjunction in human spermatogenesis. Cytogenet Genome Res 111: 245–249.

    Article  PubMed  CAS  Google Scholar 

  • Martin RH, Rademaker AW, Greene C et al. (2003) A comparison of the frequency of sperm chromosome abnormalities in men with mild, moderate, and severe oligozoospermia. Biol Reprod 69: 535–539.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Pasarell O, Marquez C, Coll MD, Egozcue J, Templado C (1997) Analysis of human sperm-derived pronuclei by three-colour fluorescent in-situ hybridization. Hum Reprod 12(4): 641–645.

    Article  PubMed  CAS  Google Scholar 

  • Martins RP, Ostermeier GC, Krawetz SA (2004) Nuclear matrix interactions at the human protamine domain. J Biol Chem 279: 51862–51868.

    Article  PubMed  CAS  Google Scholar 

  • Meaburn KJ, Misteli T (2007) Chromosome territories. Nature 445: 379–381.

    Article  PubMed  CAS  Google Scholar 

  • Moskovtsev S, White J, Wilis J, Mulle BN (2007) Disrupted telomere–telomere interactions are associated with DNA damage in human spermatozoa. Personal communication: Florence – Utah International Symposium ‘Genetics of Male Infertility’, Florence, 14–16 September 2007.

  • Mudrak O, Tomilin N, Zalensky AO (2005) Chromosome architecture in the decondensing human sperm nucleus. J Cell Sci 118: 4541–4550.

    Article  PubMed  CAS  Google Scholar 

  • Oliver-Bonet M, Ko E, Martin RH (2005) Male infertility in reciprocal translocation carriers: the sex body affair. Cytogenet Genome Res 111: 343–346.

    Article  PubMed  CAS  Google Scholar 

  • Sakkas D, Moffatt O, Manicardi GC, Mariethoz E, Tarozzi N, Bizzaro D (2002) Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod 66: 1061–1067.

    Article  PubMed  CAS  Google Scholar 

  • Sassone-Corsi P (2002) Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296: 2176–2178.

    Article  PubMed  CAS  Google Scholar 

  • Sbracia M, Baldi M, Cao D et al. (2002) Preferential location of sex chromosomes, their aneuploidy in human sperm, and their role in determining sex chromosome aneuploidy in embryos after ICSI. Hum Reprod 17: 320–324.

    Article  PubMed  CAS  Google Scholar 

  • Solov’eva L, Svetlova M, Bodinski D, Zalensky AO (2004) Nature of telomere dimers and chromosome looping in human spermatozoa. Chromosome Res 12: 817–823.

    Article  PubMed  CAS  Google Scholar 

  • Taddei A, Hediger F, Neumann FR, Gasser SM (2004) The function of nuclear architecture: a genetic approach. Annu Rev Genet 38: 305–345.

    Article  PubMed  CAS  Google Scholar 

  • Tempest HG, Griffin DK (2004) The relationship between male infertility and increased levels of sperm disomy. Cytogenet Genome Res 107(1–2): 83–94.

    Article  PubMed  CAS  Google Scholar 

  • Terada Y, Luetjens CM, Sutovsky P, Schatten G (2000) Atypical decondensation of the sperm nucleus, delayed replication of the male genome, and sex chromosome positioning following intracytoplasmic human sperm injection (ICSI) into golden hamster eggs: does ICSI itself introduce chromosomal anomalies? Fertil Steril 74: 454–460.

    Article  PubMed  CAS  Google Scholar 

  • Tilgen N, Guttenbach M, Schmid M (2001) Heterochromatin is not an adequate explanation for close proximity of interphase chromosomes 1–9, 9–Y, and 16–Y in human spermatozoa. Exp Cell Res 265: 283–287.

    Article  PubMed  CAS  Google Scholar 

  • Ward MA, Ward WS (2004) A model for the function of Sperm DNA degradation. Reprod Fertil Dev 16: 547–554.

    Article  PubMed  CAS  Google Scholar 

  • WHO (World Health Organization) (1999) Laboratory Manual for the Examination of Human Semen and Sperm–Cervical Mucus Interaction, 4th edn. Cambridge, UK: Cambridge University Press, pp. 60–61.

    Google Scholar 

  • Wiland E, Wojda A, Kamieniczna M, Latos-Bieleńska A, Jedrzejczak P, Kurpisz M (2001) Idiopathic infertility in married couples in the light of cytogenetic analysis and sperm penetration assay. Folia Histochem Cytobiol 39(1): 35–41.

    PubMed  CAS  Google Scholar 

  • Wiland E, Wojda A, Kamieniczna M, Szczygieł M, Kurpisz M (2002) Infertility status of male individuals with abnormal spermiogram evaluated by cytogenetic analysis and in vitro sperm penetration assay. Med Sci Monit May, 8(5): CR394–400.

    Google Scholar 

  • Wiland E, Żegało M, Kurpisz M (2008) Interindividual differences and alterations in the topology of chromosomes in human sperm nuclei of fertile donors and carriers of reciprocal translocations. Chromosome Res 16: 291–305.

    Article  PubMed  CAS  Google Scholar 

  • Wykes SM, Krawetz SA (2003) The structural organization of sperm chromatin. J Biol Chem 278: 29471–29477.

    Article  PubMed  CAS  Google Scholar 

  • Zalenskaya IA, Zalensky AO (2002) Telomeres in mammalian male germ cells. Int Rev Cytol 218: 37–67.

    Article  PubMed  CAS  Google Scholar 

  • Zalenskaya IA, Zalensky AO (2004) Non-random positioning of chromosomes in human sperm nuclei. Chromosome Res 12: 163–173.

    Article  PubMed  CAS  Google Scholar 

  • Zalensky AO, Allen MJ, Kobayashi A, Zalenskaya IA, Balhorn R, Bradbury EM (1995) Well-defined genome architecture in the human sperm nucleus. Chromosoma 103: 577–590.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Kurpisz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olszewska, M., Wiland, E. & Kurpisz, M. Positioning of chromosome 15, 18, X and Y centromeres in sperm cells of fertile individuals and infertile patients with increased level of aneuploidy. Chromosome Res 16, 875–890 (2008). https://doi.org/10.1007/s10577-008-1246-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-008-1246-2

Key words

Navigation