Skip to main content
Log in

Nucleolus size variation during meiosis and NOR activity of a B chromosome in the grasshopper Eyprepocnemis plorans

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The number of nucleoli and nucleolar area were measured in meiotic cells from males of the grasshopper Eyprepocnemis plorans collected in three natural populations. Number of nucleoli per cell showed no significant correlation among cells in different meiotic stages, but there was strong positive correlation for nucleolar area between leptotene and interkinesis cells in individuals from distant populations (Salobreña in Spain, and Smir in Morocco). No correlation was, however, observed for both parameters between the meiotic stages analysed in individuals from the population of Torrox (Spain). The number of nucleoli at leptotene was about double the number at interkinesis, as expected from the double ploidy level at leptotene and the corresponding double number of rDNA clusters. Leptotene nucleolar area, however, was about fourfold that in interkinesis, presumably due to higher requirements for ribosome biogenesis in meiosis I than meiosis II. In Torrox, diplotene cells showed a lower number of nucleoli but larger nucleolar area than in leptotene cells, suggesting an increase in nucleolus size during prophase I. Significant differences were found among populations for nucleolar area but not for number of nucleoli, the smallest nucleolar area being observed in Torrox, which is the population harbouring the most parasitic B chromosome variant. No clear effects on nucleolar area or number of nucleoli were associated with the B-chromosome number. However, B-chromosome effects on the nucleolar area were apparent in the Torrox population when data were analysed with respect to a B-chromosome odd–even pattern in leptotene and interkinesis cells. However, in diplotene cells no odd–even pattern was observed for both nucleolar parameters, suggesting that the increase in nucleolar size from leptotene to diplotene dilutes the leptotene odd–even pattern. The rDNA distally located in the B chromosome was associated with a nucleolus in 6.5% out of the 247 diplotene cells analysed. The implications of these findings are discussed in the context of B chromosomes as stress-causing genome parasites and the nucleolus as a sensor of stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen JS, Lam YW, Leung AK et al. (2005) Nucleolar proteome dynamics. Nature 433: 77–83.

    Article  PubMed  CAS  Google Scholar 

  • Bakkali M, Camacho JPM (2004) The B chromosome polymorphism of the grasshopper Eyprepocnemis plorans in North Africa. III. Mutation rate of B chromosomes. Heredity 92: 428–433.

    Article  PubMed  CAS  Google Scholar 

  • Bakkali M, Cabrero J, López-León MD, Perfectti F, Camacho JPM (1999) The B chromosome polymorphism of the grasshopper Eyprepocnemis plorans in North Africa. I. B variants and frequency. Heredity 83: 428–434.

    Article  PubMed  Google Scholar 

  • Bakkali M, Cabrero J, López-León MD, Perfectti F, Camacho JPM (2001) Population differences in the expression of nucleolus organizer regions in the grasshopper Eyprepocnemis plorans. Protoplasma 217: 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Bakkali M, Perfectti F, Camacho JPM (2002) The B-chromosome polymorphism of the grasshopper Eyprepocnemis plorans in North Africa. II. Parasitic and neutralized B1 chromosomes. Heredity 88: 14–18.

    Article  PubMed  CAS  Google Scholar 

  • Busch H (1997) Nucleolar and nucleolonemal proteins of cancer cells. J Tumor Marker Oncol 12: 5–68.

    Google Scholar 

  • Busch H, Daskal Y, Gyorkey F, Smetana K (1979) Silver staining of nucleolar granules in tumor cells. Cancer Res 39: 857–863.

    PubMed  CAS  Google Scholar 

  • Cabrero J, Alché JD, Camacho JPM (1987) Effects of B chromosome on the activity of nucleolus organizer regions in the grasshopper Eyprepocnemis plorans: activation of a latent nucleolus organizer region on a B chromosome fused to an autosome. Genome 29: 116–121.

    Google Scholar 

  • Cabrero J, López-León MD, Bakkali M, Camacho JPM (1999) Common origin of B chromosome variants in the grasshopper Eyprepocnemis plorans. Heredity 83: 435–439.

    Article  PubMed  Google Scholar 

  • Camacho JPM (2005) B Chromosomes. In: Gregory TR, ed., The Evolution of the Genome. San Diego: Elsevier, pp. 223–286.

    Google Scholar 

  • Camacho JPM, Sharbel TF, Beukeboom LW (2000) B chromosome evolution. Phil Trans R Soc Lond B 355: 163–178.

    Article  CAS  Google Scholar 

  • Camacho JPM, Shaw MW, López–León MD, Pardo MC, Cabrero J (1997) Population dynamics of a selfish B chromosome neutralized by the standard genome in the grasshopper Eyprepocnemis plorans. Am Nat 149: 1030–1050.

    Article  PubMed  CAS  Google Scholar 

  • Camacho JPM, Perfectti F, Teruel M, López-León MD, Cabrero J (2004) The odd–even effect in mitotically unstable B chromosomes in grasshoppers. Cytogenet Genome Res 106: 325–331.

    Article  PubMed  CAS  Google Scholar 

  • Caspersson T (1950) Cell Growth and Cell Function, a Cytochemical Study. New York: WW Norton.

    Google Scholar 

  • Derenzini M (2000) The AgNORs. Micron 31: 117–120.

    Article  PubMed  CAS  Google Scholar 

  • Derenzini M, Farabegoli F, Trerè D (1992) Relationship between interphase AgNOR distribution and nucleolar size in cancer cells. J Mol Histol 24: 951–956.

    Article  CAS  Google Scholar 

  • Derenzini M, Sirri V, Trerè D (1994) Nucleolar organizer regions in tumour cells. Cancer J 7: 71–77.

    Google Scholar 

  • Derenzini M, Trerè D, Pession A, Montanaro L, Sirri V, Ochs RL (1998) Nucleolar function and size in cancer cells. Am J Pathol 152: 1291–1297.

    PubMed  CAS  Google Scholar 

  • Derenzini M, Trerè D, Pession A, Govoni M, Sirri V, Chieco P (2000) Nucleolar size indicates the rapidity of cell proliferation in cancer tissues. J Pathol 191: 181–186.

    Article  PubMed  CAS  Google Scholar 

  • Guo M, Davis D, Birchler JA (1996) Dosage effects on gene expression in a maize ploidy series. Genetics 142: 1349–1355.

    PubMed  CAS  Google Scholar 

  • Herbener GH, Bendayan M (1998) A correlated morphometric and cytochemical study on hepatocyte nucleolar size and RNA distribution during vitellogenesis. Histochem J 20: 194–200.

    Article  Google Scholar 

  • Hudson LA, Ciborowski JJH (1996) Teratogenic and genotoxic responses of larval Chironomus salinarius group (Diptera: Chironomidae) to contaminated sediment. Environ Toxicol Chem 15: 1375–1381.

    Article  CAS  Google Scholar 

  • Lagerstedt S (1949) Cytological studies on the protein metabolism of the liver in the rat. Acta Anat Suppl 9: 1–140.

    Google Scholar 

  • López-León MD, Cabrero J, Pardo MC, Viseras E, Camacho JPM, Santos JL (1993) Generating high variability of B chromosomes in Eyprepocnemis plorans (grasshopper). Heredity 71: 352–362.

    Google Scholar 

  • López-León MD, Neves N, Schwarzacher T, Heslop-Harrison JS, Hewitt GM, Camacho JPM (1994) Possible origin of a B chromosome deduced from its DNA composition using double FISH technique. Chromosome Res 2: 87–92.

    Article  PubMed  Google Scholar 

  • López-León MD, Cabrero J, Camacho JPM (1995) Changes in NOR activity pattern in the presence of supernumerary heterochromatin in the grasshopper Eyprepocnemis plorans. Genome 38: 68–74.

    Article  PubMed  Google Scholar 

  • McClintock B (1934) The relationship of a particular chromosomal element to the development of the nucleoli in Zea mays. Z Zellforch Mikrosk Anat 21: 294–328.

    Article  Google Scholar 

  • Mosgoeller W (2004) Nucleolar ultrastructure in vertebrates. In: Olson MOJ, ed., The Nucleolus. New York: Kluwer, pp. 10–20.

    Google Scholar 

  • Nakamoto K, Ito A, Watabe K et al. (2001) Increased expression of a nucleolar Nop5/Sik family member in metastatic melanoma cells: evidence for its role in nucleolar sizing and function. Am J Pathol 159: 1363–1374.

    PubMed  CAS  Google Scholar 

  • Okabe Y, Nakamura S, Okumura H et al. (1991) The relation of argyrophilic proteins of nucleolar organizer regions (AgNORs) to the proportions of Ki–67 or DNA polymerase á-reacting cells in non-Hodgkin's lymphomas. Anticancer Res 11: 2031–2035.

    PubMed  CAS  Google Scholar 

  • Olson MOJ (2004) Sensing cellular stress: another new function for the nucleolus? Sci STKE 2004: e10.

    Article  Google Scholar 

  • Pikaard CS (2002) Transcription and tyranny in the nucleolus: the organization, activation, dominance and repression of ribosomal RNA genes. In: Somerville CR & Meyerowitz EM, eds., The Arabidopsis Book. Rockville: American Society of Plant Biologists, pp. 1–23.

    Google Scholar 

  • Rasband WS (1997) ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/, 1997–2006.

  • Rubbi CP, Milner J (2003) Disruption of the nucleolus mediates stabilisation of p53 in response to DNA damage and other stresses. EMBO J 22: 6068–6077.

    Article  PubMed  CAS  Google Scholar 

  • Rufas JS, Iturra P, de Souza W, Esponda P (1982) Simple silver staining procedure for the localization of nucleolus and nucleolar organizer under light and electron microscopy. Arch Biol 93: 267–274.

    Google Scholar 

  • Schmid M, Löser C, Schmidtke J, Engel W (1982) Evolutionary conservation of a common pattern of activity of nucleolus organizers during spermatogenesis in vertebrates. Chromosoma 86: 149–179.

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Müller H, Stasch S, Engel W (1983) Silver staining of nucleolus organizer regions during human spermatogenesis. Hum Genet 64: 363–370.

    Article  PubMed  CAS  Google Scholar 

  • Shubert I, Künzel G (1990) Position dependent NOR activity in barley. Chromosoma 99: 352–359.

    Article  Google Scholar 

  • Sumner AT (2003) Chromosomes: Organization and Function. Oxford: Blackwell.

    Google Scholar 

  • Thiele J, Fischer R (1993) Bone marrow tissue and proliferation markers: results and general problems. Virchows Arch A Pathol Anat Histopathol 423: 409–416.

    Article  PubMed  CAS  Google Scholar 

  • Trerè D (2000) AgNOR staining and quantification. Micron 31: 127–131.

    Article  PubMed  Google Scholar 

  • Tsai RYL, McKay RDG (2005) A multistep, GTP-driven mechanism controlling the dynamic cycling of nucleostemin. J Cell Biol 168: 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Tuma RS (2005) A GTP signal to the nucleolus. J Cell Biol 168: 172.

    CAS  Google Scholar 

  • Wachtler F, Stahl A (1993) The nucleolus: a structural and functional interpretation. Micron 24: 473–505.

    Article  Google Scholar 

  • Wannemacher RW (1972) Ribosomal ribonucleic acid synthesis and function as influenced by amino acid supply and stress. Biochem J 129: 5P–6P.

    Google Scholar 

  • Yezerinac SM, Lougheed SC, Handford P (1992) Measurement error and morphometric studies- Statistical power and observer experience. Syst Biol 41: 471–482.

    Article  Google Scholar 

  • Zurita S, Cabrero J, López-León MD, Camacho JPM (1998) Polymorphism regeneration for a neutralized selfish B chromosome. Evolution 52: 274–277.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pedro M. Camacho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teruel, M., Cabrero, J., Perfectti, F. et al. Nucleolus size variation during meiosis and NOR activity of a B chromosome in the grasshopper Eyprepocnemis plorans . Chromosome Res 15, 755–765 (2007). https://doi.org/10.1007/s10577-007-1159-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-007-1159-5

Key words

Navigation