Skip to main content
Log in

Histone deacetylase activity is necessary for chromosome condensation during meiotic maturation in Xenopus laevis

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Chromosome condensation is thought to be an essential step for the faithful transmission of genetic information during cellular division or gamete formation. The folding of DNA into metaphase chromosomes and its partition during the cell cycle remains a fundamental cellular process that, at the molecular level, is poorly understood. Particularly, the role of histone deacetylase (HDAC) activities in establishing and maintaining meiotic metaphase chromosome condensation has been little documented. In order to better understand how metaphase chromosome condensation is achieved during meiosis, we explored, in vivo, the consequences of HDAC activities inhibition in a Xenopus oocyte model. Our results show that deacetylase activity plays a crucial role in chromosome condensation. This activity is necessary for correct chromosome condensation since the earlier stages of meiosis, but dispensable for meiosis progression, meiosis exit and mitosis entry. We show that HDAC activity correlates with chromosome condensation, being higher when chromosomes are fully condensed and lower during interphase, when chromosomes are decondensed. In addition, we show that, unlike histone H4, Xenopus maternal histone H3 is stored in the oocyte as a hypoacetylated form and is rapidly acetylated when the oocyte exits meiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrieu A, Magnaghi-Jaulin L, Kahana JA et al. (2001) Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 106: 83–93.

    Article  CAS  PubMed  Google Scholar 

  • Almouzni G, Khochbin S, Dimitrov S, Wolffe AP (1994) Histone acetylation influences both gene expression and development of Xenopus laevis. Dev Biol 165: 654–669.

    Article  CAS  PubMed  Google Scholar 

  • Astrand C, Klenka T, Wrange O, Belikov S (2004) Trichostatin A reduces hormone-induced transcription of the MMTV promoter and has pleiotropic effects on its chromatin structure. Eur J Biochem 271: 1153–1162.

    Article  CAS  PubMed  Google Scholar 

  • Bannister AJ, Miska EA (2000) Regulation of gene expression by transcription factor acetylation. Cell Mol Life Sci 57: 1184–1192.

    CAS  PubMed  Google Scholar 

  • Bird AW, Yu DY, Pray-Grant MG et al. (2002) Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419: 411–415.

    Article  CAS  PubMed  Google Scholar 

  • Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391: 597–601.

    CAS  PubMed  Google Scholar 

  • Chen RH, Murray A (1997) Characterization of spindle assembly checkpoint in Xenopus egg extracts. Methods Enzymol 283: 572–584.

    CAS  PubMed  Google Scholar 

  • Choy JS, Kron SJ (2002) NuA4 subunit Yng2 function in intra-S-phase DNA damage response. Mol Cell Biol 22: 8215–8225.

    Article  CAS  PubMed  Google Scholar 

  • Cimini D, Mattiuzzo M, Torosantucci L, Degrassi F (2003) Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects. Mol Biol Cell 14: 3821–3833.

    Article  CAS  PubMed  Google Scholar 

  • Dimitrov S, Almouzni G, Dasso M, Wolffe AP (1993) Chromatin transitions during early Xenopus embryogenesis: changes in histone H4 acetylation and in linker histone type. Dev Biol 160: 214–227.

    Article  CAS  PubMed  Google Scholar 

  • Earnshaw WC, Halligan B, Cooke CA, Heck MM, Liu LF (1985) Topoisomerase II is a structural component of mitotic chromosome scaffolds. J Cell Biol 100: 1706–1715.

    CAS  PubMed  Google Scholar 

  • Ekwall K, Olsson T, Turner BM, Cranston G, Allshire RC (1997) Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91: 1021–1032.

    Article  CAS  PubMed  Google Scholar 

  • Fissore RA, Robl JM (1992) Intracellular Ca2+ response of rabbit oocytes to electrical stimulation. Mol Reprod Dev 32: 9–16.

    Article  CAS  PubMed  Google Scholar 

  • Formosa T (2003) Changing the DNA landscape: putting a SPN on chromatin. Curr Top Microbiol Immunol 274: 171–201.

    CAS  PubMed  Google Scholar 

  • Gall JG, Wu Z, Murphy C, Gao H (2004) Structure in the amphibian germinal vesicle. Exp Cell Res 296: 28–34.

    Article  CAS  PubMed  Google Scholar 

  • Gard DL (1992) Microtubule organization during maturation of Xenopus oocytes: assembly and rotation of the meiotic spindles. Dev Biol 151: 516–530.

    Article  CAS  PubMed  Google Scholar 

  • Gasser SM, Laroche T, Falquet J, Boy de la Tour E, Laemmli UK (1986) Metaphase chromosome structure. Involvement of topoisomerase II. J Mol Biol 188: 613–629.

    Article  CAS  PubMed  Google Scholar 

  • Gerhart J, Wu M, Kirschner M (1984) Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs. J Cell Biol 98: 1247–1255.

    Article  CAS  PubMed  Google Scholar 

  • Kusch T, Florens L, Macdonald WH et al. (2004) Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306: 2084–2087.

    Article  CAS  PubMed  Google Scholar 

  • Losada A, Hirano T (2005) Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev 19: 1269–1287.

    Article  CAS  PubMed  Google Scholar 

  • Magnaghi-Jaulin L, Groisman R, Naguibneva I et al. (1998) Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391: 601–605.

    CAS  PubMed  Google Scholar 

  • Morgan GT (2002) Lampbrush chromosomes and associated bodies: new insights into principles of nuclear structure and function. Chromosome Res 10: 177–200.

    Article  CAS  PubMed  Google Scholar 

  • Murray AW (1991) Cell cycle extracts. Methods Cell Biol 36: 581–605.

    CAS  PubMed  Google Scholar 

  • Nebreda AR, Ferby I (2000) Regulation of the meiotic cell cycle in oocytes. Curr Opin Cell Biol 12: 666–675.

    Article  CAS  PubMed  Google Scholar 

  • Nicolas E, Morales V, Magnaghi-Jaulin L, Harel-Bellan A, Richard-Foy H, Trouche D (2000) RbAp48 belongs to the histone deacetylase complex that associates with the retinoblastoma protein. J Biol Chem 275: 9797–9804.

    CAS  PubMed  Google Scholar 

  • Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20: 214–220.

    Article  CAS  PubMed  Google Scholar 

  • Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344: 503–508.

    Article  CAS  PubMed  Google Scholar 

  • Ohsumi K, Sawada W, Kishimoto T (1994) Meiosis-specific cell cycle regulation in maturing Xenopus oocytes. J Cell Sci 107: 3005–3013.

    CAS  PubMed  Google Scholar 

  • Peter M, Castro A, Lorca T et al. (2001) The APC is dispensable for first meiotic anaphase in Xenopus oocytes. Nat Cell Biol 3: 83–87.

    CAS  PubMed  Google Scholar 

  • Qiu L, Burgess A, Fairlie DP, Leonard H, Parsons PG, Gabrielli BG (2000) Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol Biol Cell 11: 2069–2083.

    CAS  PubMed  Google Scholar 

  • Ryan J, Llinas AJ, White DA, Turner BM, Sommerville J (1999) Maternal histone deacetylase is accumulated in the nuclei of Xenopus oocytes as protein complexes with potential enzyme activity. J Cell Sci 112: 2441–2452.

    CAS  PubMed  Google Scholar 

  • Smillie DA, Llinas AJ, Ryan JT, Kemp GD, Sommerville J (2004) Nuclear import and activity of histone deacetylase in Xenopus oocytes is regulated by phosphorylation. J Cell Sci 117: 1857–1866.

    Article  CAS  PubMed  Google Scholar 

  • Swedlow JR, Hirano T (2003) The making of the mitotic chromosome: modern insights into classical questions. Mol Cell 11: 557–569.

    Article  CAS  PubMed  Google Scholar 

  • Taddei A, Maison C, Roche D, Almouzni G (2001) Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nat Cell Biol 3: 114–120.

    Article  CAS  PubMed  Google Scholar 

  • Thomson S, Clayton AL, Hazzalin CA, Rose S, Barratt MJ, Mahadevan LC (1999) The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J 18: 4779–4793.

    Article  CAS  PubMed  Google Scholar 

  • Verdone L, Caserta M, Di Mauro E (2005) Role of histone acetylation in the control of gene expression. Biochem Cell Biol 83: 344–353.

    Article  CAS  PubMed  Google Scholar 

  • Xie AY, Folk WR (2002) Inhibition of polyomavirus ori-dependent DNA replication by mSin3B. J Virol 76: 11809–11818.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Magnaghi-Jaulin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnaghi-Jaulin, L., Jaulin, C. Histone deacetylase activity is necessary for chromosome condensation during meiotic maturation in Xenopus laevis. Chromosome Res 14, 319–332 (2006). https://doi.org/10.1007/s10577-006-1049-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-006-1049-2

Key words

Navigation