Skip to main content
Log in

Macrokinetics of fast reactions

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Various forms of chemical reaction macrokinetics are considered taking into account the possible acceleration of processes in regions with high parameter gradients, in particular, in the vicinity of shock waves. The possibility of determining the kinetics from data of a dynamic experiment is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Tarver and M. R. Manaa, “Chemistry of detonation waves in condensed phase explosives,” in: M. R. Manaa (ed.), Chemistry at Extreme Conditions, Chapter 17, Elsevier (2005), pp. 495–516.

  2. E. L. Lee and C. M. Tarver, “Phenomenological model of shock initiation in heterogeneous explosives,” Phys. Fluids, 23, 2362–2371 (1980).

    Article  ADS  Google Scholar 

  3. V. F. Lobanov, “Modeling of detonation waves in heterogeneous condensed explosives,” Fiz. Goreniya Vzryva, 16, No. 6, 113–116 (1980).

    Google Scholar 

  4. S. A. Sheffield, D. D. Bloomquist, and C. M. Tarver, “Subnanosecond measurements of detonation fronts in solid high explosives,” J. Chem. Phys., 80, No. 8, 3831–3844 (1984).

    Article  ADS  Google Scholar 

  5. J. N. Johnson, P. K. Tang, and C. A. Forest, “Shock-wave initiation of heterogeneous reactive solids,” J. Appl. Phys., 57, No. 9, 4323–4334 (1985).

    Article  ADS  Google Scholar 

  6. W. L. Seitz, J. Stacy, and H. L. Wackerle, “Detonation reaction zone studies on TATB explosives,” in: Proc. of 8th Symp. (Int.) on Detonation, Naval Surface Weapons Center, Albuquerque (1985), pp. 123–132.

    Google Scholar 

  7. A. V. Utkin, G. I. Kanel’, and V. E. Fortov, “Empirical macrokinetics of the decomposition desensitized RDX in shock and detonation waves,” Combust., Expl., Shock Waves, 25, No. 5, 625–632 (1989).

    Article  Google Scholar 

  8. Yu. A. Aminov, N. S. Es’kov, Yu. R. Nikitenko, and G. N. Rykovanov, “Calculation of the reactionzone structure for heterogeneous explosives,” Combust., Expl., Shock Waves, 34, No. 2, 230–233 (1998).

    Article  Google Scholar 

  9. B. Yu. Klimenko and A. N. Dremin, “Kinetics of decomposition reactions at the shock front,” in: Detonation: Proc. VI Symp. on Combustion and Explosion, Chernogolovka (1980), pp. 69–73.

  10. A. N. Dremin, V. Yu. Klimenko, O. N. Davidova, and T. A. Zoludeva, “Multiprocess detonation model,” in: Proc. 9th Symp. (Int.) on Detonation, Portland (1989), pp. 725–728.

  11. A. N. Dremin, “Modern problems of studying detonation in condensed media,” in: Nauch. Tr. Inst. Mekh. Mosk. Gos. Univ., MGU, Moscow (1973), pp. 150–157.

    Google Scholar 

  12. A. N. Dremin, “On condensed explosives detonation decomposition mechanism,” in: Symp. on High Dynamic Pressures, Paris (1978), pp. 175–182.

  13. V. K. Ashaev, G. S. Doronin, and A. D. Levin, “Detonation front in condensed high explosives,” Combust., Expl., Shock Waves, 24, No. 1, 88–92 (1988).

    Article  Google Scholar 

  14. B. G. Loboiko and S. N. Lyubyatinskii, “Reaction zone of detonating solid explosives,” Combust., Expl., Shock Waves, 36, No. 6, 716–733 (2000).

    Article  Google Scholar 

  15. C. M. Tarver, R. D. Breithaupt, and J. W. Kury, “Detonation waves in pentaerythritol tetranitrate,” J. Appl. Phys., 81, No. 11, 7193–7202 (1997).

    Article  ADS  Google Scholar 

  16. A. V. Fedorov, “Detonation wave structure in liquid homogeneous, solid heterogeneous and agatized HE,” in: Proc. of 12th Int. Detonation Symp. (San Diego, CA, 2005), Office of Naval Research, Arlington (2005), pp. 230–233.

    Google Scholar 

  17. A. V. Utkin, S. A. Kolesnikov, and S. V. Pershin, “Effect of initial density on the structure of detonation waves in heterogeneous explosives,” Combust., Expl., Shock Waves, 38, No. 5, 590–597 (2002).

    Article  Google Scholar 

  18. V. M. Mochalova, A. V. Utkin, and A. B. Anan’in, “Effect of dispersion on the structure of a detonation wave in pressed TNETB,” Combust., Expl., Shock Waves, 43, No. 5, 575–579 (2007).

    Article  Google Scholar 

  19. V. Yu. Klimenko, “Multiprocess model of detonation (version 3),” in: S. C. Schmidt and W. C. Tao (eds.), Shock Compression of Condensed Material-1995, Part 2, AIP (1996), pp. 361–364. (AIP Conf. Proc., Vol. 370.)

  20. I. I. Karpenko and N. V. Korepova, “Numerical simulation of the critical diameter of steady-state detonation of condensed explosives,” Khim. Fiz., 24, No. 10, 31–37 (2005).

    Google Scholar 

  21. V. S. Trofimov, “On the possibility of accelerating the reaction and diffusion at the detonation shock front,” in: Detonation. Critical Phenomena. Physicochemical Transformations in Shock Waves, Department of the Institute of Chemical Physics, Chernogolovka (1978), pp. 11–16.

    Google Scholar 

  22. V. S. Trofimov and G. P. Trofimova, “Possibility of decomposition of cast TNT in a shock,” Combust., Expl., Shock Waves, 16, No. 2, 215–221 (1980).

    Article  Google Scholar 

  23. A. A. Vorob’ev, V. S. Trofimov, K. M. Mikhailyuk, A. N. Korolev, and G. B. Brau’er, “Study of detonation initiation in cast trotyl by a dynamic method. I. Formulation of the problem and experimental technique,” Combust., Expl., Shock Waves, 21, No. 2, 227–236 (1985).

    Article  Google Scholar 

  24. A. A. Vorob’ev, V. S. Trofimov, K. M. Mikhailyuk, A. N. Korolev, and O. N. Zhiranskaya, “Study of detonation initiation in cast trotyl by a dynamic method. II. Determination of sound velocity and general kinetic characteristic,” Combust., Expl., Shock Waves, 23, No. 1, 12–19 (1987).

    Article  Google Scholar 

  25. V. S. Trofimov, “Dynamic method for investigating relaxation processes,” Combust., Expl., Shock Waves, 17, No. 5, 564–571 (1981).

    Article  MathSciNet  Google Scholar 

  26. V. S. Trofimov and G. P. Trofimova, “Simple proof of the dependence of the reaction rate on the rate of substance deformation in a detonation wave,” Combust., Expl., Shock Waves, 26, No. 1, 121–127 (1990).

    Article  Google Scholar 

  27. V. S. Trofimov and G. P. Trofimova, “Velocity of a weak discontinuity in a reactive medium,” Fiz. Goreniya Vzryva, 26, No. 6, 146–147 (1990).

    Google Scholar 

  28. R. Engelke and S. A. Sheffield, “Initiation and propagation of detonation in condensed-phase high explosives,” in: L. Davison and M. Shahinpoor (eds.), High-Pressure Shock Compression of Solids III, Springer, New York (1998), pp. 171–239.

    Google Scholar 

  29. A. N. Dremin, S. D. Savrov, V. S. Trofimov, and K. K. Shvedov, Detonation Waves in Condensed Media [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  30. A. P. Ershov and D. A. Medvedev, “On the kinetics of chemical reactions under detonation conditions,” Technical Physics Letters, 35, No. 3, 127–129 (2009).

    Article  ADS  Google Scholar 

  31. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions, Plenum, New York (1985).

    Google Scholar 

  32. Yu B. Rumer and M. Sh. Ryvkin, Thermodynamics, Statistical Physics, and Kinetics [in Russian], Izd. Novosib. Gos. Univ., Novosibirsk (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Ershov.

Additional information

Translated from Fizika Goreniya i Vzryva, Vol. 46, No. 6, pp. 49–59, November–December, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ershov, A.P. Macrokinetics of fast reactions. Combust Explos Shock Waves 46, 656–665 (2010). https://doi.org/10.1007/s10573-010-0086-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-010-0086-5

Key words

Navigation