Skip to main content
Log in

Mathematical modeling of detonation suppression in a hydrogen-oxygen mixture by inert particles

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The paper addresses the problem of searching for methods that can control, suppress, and attenuate explosive and detonation processes in homogeneous and heterogeneous media (mixtures of reactive gases and inert species). The analysis is performed by analytical and numerical methods. The problem of detonation suppression in a mixture of reactive gases and inert species (argon and sand particles) in a one-dimensional unsteady flow is formulated, and its solution is given. The effect of the particle diameter and concentration on the detonation velocity is determined; the parameters of the detonation wave in a stoichiometric hydrogen-oxygen mixture diluted by a chemically inert gas (argon) and particles is determined. The influence of the initial parameters of the mixture on the possibility of detonation suppression by inert particles is studied. It is shown that the detonation velocity substantially decreases with increasing volume fraction of particles. A decrease in the particle size with an unchanged volume fraction is also found to reduce the detonation velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Laffitte and R. Bouchet, “Suppression of explosion waves in gaseous mixtures by means of fine powders,” in: Proc. 7th Int. Symp. on Combustion (1958).

  2. A. A. Borisov, B. E. Gel’fand, S. A. Gubin, and S. M. Kogarko, “Effect of inert solid particles on detonation in a combustible gas mixture,” Combust., Expl., Shock Waves, 11, No. 6, 774–777 (1975).

    Article  Google Scholar 

  3. Yu. V. Kazakov, A. V. Fedorov, and V. M. Fomin, “Detonation dynamics of gas suspensions,” Preprint No. 23–87, Inst. Theor. Appl. Mech., Sib. Div., Acad, of Sci. of the USSR, Novosibirsk (1987).

    Google Scholar 

  4. Yu. V. Kazakov, A. V. Fedorov, and V. M. Fomin, “Normal detonation regimes in relaxing media,” Combust., Expl., Shock Waves, 25, No. 1, 109–116 (1989).

    Article  Google Scholar 

  5. Yu. V. Kazakov, Yu. V. Mironov, and A. V. Fedorov, “Calculation of detonation of the gas mixture with inert solid particles,” in: Modeling in Mechanics (collected scientific papers) [in Russian], Vol. 5(22), No. 3 (1991).

  6. A. V. Fedorov and V. M. Fomin, “Detonation of the gas mixtures with inert solid particles,” in: Proc. IUTAM Symp. on Combustion in Supersonic Flows (1997), pp. 147–191.

  7. M. Wolinski and P. Wolanski, “Gaseous detonation processes in presence of inert particles,” Arch. Combust., 7, Nos. 3–4, 353–370 (1987).

    Google Scholar 

  8. P. Wolanski, J. C. Liu, C. W. Kauffmann, J. A. Nicholls, and M. Sichel, “The effects of inert particles on methane-air detonations,” Arch. Combust., 8, No. 1, 15–32 (1988).

    Google Scholar 

  9. M. V. Papalexandris, “Numerical simulation of detonations in mixtures of gases and solid particles,” J. Fluid Mech., 507, 95–142 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. P. A. Fomin and J.-R. Chen, “Effect of chemically inert particles on parameters and suppression of detonation in gases,” Combust., Expl., Shock Waves, 45, No. 3, 303–313 (2009).

    Article  Google Scholar 

  11. I. A. Bedarev and A. V. Fedorov, “Comparative analysis of three mathematical models of hydrogen ignition,” Combust., Expl., Shock Waves, 42, No. 1, 19–26 (2006).

    Article  Google Scholar 

  12. V. M. Boiko, V. P. Kiselev, S. P. Kiselev, A. N. Papyrin, S. V. Poplavskii, and V. M. Fomin, “Interaction of a shock wave with a cloud of particles,” Combust., Expl., Shock Waves, 32, No. 2, 191–203 (1996).

    Article  Google Scholar 

  13. I. A. Bedarev and A. V. Fedorov, “Testing the method of adaptive grids by computing one-dimensional detonation waves,” Vychisl. Tekhnol., No. 3 (2009).

  14. W. Fickett and W. W. Wood, “Flow calculations for pulsating one-dimensional detonations,” Phys. Fluids, 9, No. 5 (1996).

    Google Scholar 

  15. S. A. Medvedev, “Attenuation of overdriven detonation waves with a finite reaction rate,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3 (1969).

  16. V. A. Levin and V. V. Markov, “Initiation of detonation by concentrated release of energy,” Combust., Expl., Shock Waves, 11, No. 4, 529–536 (1975).

    Article  Google Scholar 

  17. M. Short and P. A. Blythe, “Structure and stability of weak-heat-release detonations for finite Mach numbers,” Proc. Roy. Soc. London A, 458, 1795–1807 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. H. I. Lee and D. S. Stewart, “Calculation of linear detonation instability: One-dimensional instability of plane detonation,” J. Fluid Mech., 216, 103–132 (1990).

    Article  MATH  ADS  Google Scholar 

  19. P. Clavin and L. He, “Stability and nonlinear dynamics of one-dimensional overdriven detonations in gases,” J. Fluid Mech., 306, 353–378 (1996).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. R. Akbar, “Mach reflection of gaseous detonations,” Ph.D. Thesis, Rensselaer Polytechnic Inst., Troy-New York (1997).

    Google Scholar 

  21. P. A. Fomin, A. V. Trotsyuk, A. A. Vasil’ev, et al., “Model of chemical reaction kinetics for calculating detonation processes in gas and heterogeneous mixtures containing hydrogen peroxide,” Combust. Sci. Technol., 178, No. 5, 895–919 (2006).

    Article  Google Scholar 

  22. Yu. A. Nikolaev and O. P. Gaponov, “On gas detonation limits,” Combust., Expl., Shock Waves, 31, No. 3, 395–400 (1995).

    Article  Google Scholar 

  23. G. L. Schott and J. L. Kinsey, “Kinetic studies of hydroxyl radicals in shock waves. II. Induction times in the hydrogen-oxygen reactions,” J. Chem. Phys., No. 29, 1177–1188 (1958).

    Google Scholar 

  24. R. K. Cheng and A. K. Oppenheim, “Autoignition in methane-hydrogen mixtures,” Combust. Flame, 58, 125–139 (1984).

    Article  Google Scholar 

  25. Y. Hidaka, K. Sato, Y. Henmi, et al., “Shock-tube and modeling study of methane pyrolysis and oxidation,” Combust. Flame, No. 118, 340–358 (1999).

    Google Scholar 

  26. S. Fujimoto and M. Suzuki, “The induction period of hydrogen-oxygen and methane-oxygen mixtures in a shock tube,” Memoirs Defense Academy, Japan, VII, No. 3, 1037–1046 (1967).

    Google Scholar 

  27. R. I. Soloukhin, “Quasi-stationary reaction zone in gaseous detonation,” in: XI Symp. on Combustion (1967), pp. 671–676.

  28. G. B. Skinner and G. N. Ringrose, “Ignition delays of a hydrogen-oxygen-argon mixture at relatively low temperatures,” J. Chem. Phys., No. 42, 2190–2204 (1965).

    Google Scholar 

  29. N. N. Bautin and E. A. Leontovich, Methods and Procedures of Qualitative Investigation of Dynamic Systems on a Plane [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  30. Yu. A. Nikolaev and D. V. Zak, “Quasi-one-dimensional model of self-sustaining multifront gas detonation with losses and turbulence taken into account,” Combust., Expl., Shock Waves, 25, No. 2, 225–232 (1989).

    Article  Google Scholar 

  31. K. I. Shchelkin and Ya. K. Troshin, Gas Dynamics of Combustion [in Russian], Izd. Akad. Nauk SSSR, Moscow (1963), p. 256.

    Google Scholar 

  32. A. A. Vasil’ev and Yu. A. Nikolaev, “Model of the nucleus of a multifront gas detonation,” Combust., Expl., Shock Waves, 12, No. 5, 667–674 (1976).

    Article  Google Scholar 

  33. R. A. Strehlow, R. E. Maurer, and S. Rajan, “Transverse waves in detonation: I. Spacing in the hydrogen-oxygen system,” AIAA J., 7, No. 2, 323–328 (1969).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Fedorov.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 46, No. 3, pp. 103–115, May–June, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorov, A.V., Tropin, D.A. & Bedarev, I.A. Mathematical modeling of detonation suppression in a hydrogen-oxygen mixture by inert particles. Combust Explos Shock Waves 46, 332–343 (2010). https://doi.org/10.1007/s10573-010-0046-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-010-0046-0

Key words

Navigation